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Abstract

Molecular dynamics (MD) simulations constitute the cornerstone of contemporary atom-

istic modeling in chemistry, biology, and materials science. However, one of the widely

recognized and increasingly pressing issues in MD simulations is the lack of accuracy of

underlying classical interatomic potentials, which hinders truly predictive modeling of dy-

namics and function of (bio)molecular systems. Classical potentials often fail to faithfully

capture key quantum effects in molecules and materials. In this thesis, we develop a com-

bined machine learning (ML) and quantum mechanics approach that enables the direct

reconstruction of flexible molecular force fields from high-level ab initio calculations.

We approach this challenge by incorporating fundamental physical symmetries and

conservation laws into ML techniques. Using conservation of energy – a fundamental

property of closed classical and quantum mechanical systems – we derive an efficient

gradient-domain machine learning (GDML) model. The challenge of constructing conser-

vative force fields is accomplished by learning in a Hilbert space of vector-valued functions

that obey the law of energy conservation.

We proceed with the development of a multi-partite matching algorithm that enables

a fully automated recovery of physically relevant point-group and fluxional symmetries

from the training dataset into a symmetric variant of our model. The developed symmetric

GDML (sGDML) approach faithfully reproduces global force fields at quantum-chemical

CCSD(T) level of accuracy and allows converged MD simulations with fully quantized

electrons and nuclei.

We present MD simulations, for flexible molecules with up to a few dozen atoms and

provide insights into the dynamical behavior of these molecules. Our approach provides

the key missing ingredient for achieving spectroscopic accuracy in molecular simulations.





Zusammenfassung

Molekulardynamik (MD) -Simulationen bilden den Eckpfeiler der heutigen atomistischen

Modellierung in Chemie, Biologie und den Materialwissenschaften. Ein allgemein an-

erkanntes und immer dringlicheres Problem ist jedoch die mangelnde Genauigkeit der

zugrunde liegenden klassischen interatomaren Potentiale. Diese verhindern eine wirklich

prädiktive Modellierung der Dynamik und Funktion von (bio-)molekularen Systemen.

Klassische Potentiale erfassen wichtige Quanteneffekte in Molekülen und Materialien oft

nicht genau genug. In dieser Arbeit entwickeln wir einen kombinierten Ansatz aus ma-

schinellem Lernen (ML) und Quantenmechanik, der die direkte Rekonstruktion flexibler

molekularer Kraftfelder aus hochgenauen Ab-initio-Berechnungen ermöglicht.

Wir begegnen dieser Herausforderung, indem wir grundlegende physikalische Symme-

trien und Erhaltungssätze in ML-Techniken integrieren. Unter Verwendung von Energieer-

haltung - einer grundlegenden Eigenschaft geschlossener klassischer und quantenmecha-

nischer Systeme - leiten wir ein effizientes Gradient-Domain-Machine-Learning-Modell

(GDML) ab. Die Herausforderung, konservative Kraftfelder zu konstruieren, wird durch

das Lernen in einem Hilbert-Raum vektorwertiger Funktionen gelöst, die dem Gesetz der

Energieerhaltung folgen.

Wir fahren mit der Entwicklung eines multi-partiten Matching-Algorithmus fort, der

eine vollautomatische Erkennung physikalisch relevanter Punktgruppen- und dynami-

schen Symmetrien aus dem Trainingsdatensatz erkennt und deren Integration in eine

symmetrische Variante unseres Modells ermöglicht. Der entwickelte symmetrische GDML-

Ansatz (sGDML) bildet globale Kraftfelder auf dem Niveau quantenchemischer CCSD(T)-

Berechnungen genau ab und ermöglicht konvergierte MD-Simulationen mit vollständig

quantisierten Elektronen und Atomkernen.

Wir präsentieren MD-Simulationen für flexible Moleküle mit bis zu ein paar Dutzend

Atomen und geben Einblicke in das dynamische Verhalten dieser Moleküle. Unser Ansatz

liefert den fehlenden Schlüsselbestandteil für die Erzielung spektroskopischer Genauigkeit

in molekularen Simulationen.
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Chapter 1

Introduction

Molecular dynamics (MD) simulations are the cornerstone of contemporary atomistic

modeling in chemistry, biology, and materials science. They reveal the equilibrium thermo-

dynamic and dynamical properties of a system at finite temperature, while simultaneously

providing insight into its motion at atomic scale [6]. The predictive power of these simula-

tions is however only as good as the underlying description of the interatomic forces. Most

commonly, the forces are obtained from classical potentials, which provide a mechanistic

description in terms of fixed interaction patterns between bonds and bond angles within a

molecule. What makes these so-called classical force fields (FF) appealing is that they can

be fitted empirically to experimental or ab initio data and evaluated very efficiency, due to

their low number of parameters. However, these advantages come at the severe cost of

accuracy: their rigid functional form prohibits capture of a wide range of important effects

such as the anharmonic nature of atomic bonds, charge transfer and many-body effects.

It is thus widely recognized that classical potentials hinder truly predictive modeling of

the dynamics and function of (bio)molecular systems. While FFs come in many levels of

sophistication, they can never be exact, because there is no known analytic parametriza-

tion of the true quantum mechanical atomic interactions as described by the Schrödinger

equation (SE).

One possible solution to the accuracy problem is provided by direct ab initio molecular

dynamics (AIMD) simulations, where the quantum-mechanical forces are computed on

the fly for atomic configurations at every time step. The majority of AIMD simulations

employ the current workhorse method of electronic-structure theory, namely density-

functional approximations (DFA) to the exact solution of the SE for a system of nuclei

and electrons. Unfortunately, different DFAs could yield contrasting results for the struc-

ture, dynamics, and properties of molecular systems. Furthermore, DFA calculations

are not systematically improvable. Another option is the use of explicitly correlated post
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Hartree–Fock methods in AIMD simulations, alas this leads to a steep increase in the

computational resources required.

A series of methodological advances in the field of machine learning (ML) have opened

up another avenue, by providing easy-to-parameterize universal approximators with more

flexibility in the reconstruction of potential-energy surface (PES) and corresponding FFs.

Recently, a wide range of sophisticated ML models for small molecules and elemental

materials [7–60] have been proposed for constructing PES from DFA calculations. While

these results are encouraging, direct ML fitting of molecular PESs relies on the availability

of large reference datasets to obtain an accurate model. Frequently, those ML models

require training on thousands or even millions of atomic configurations, preventing the

construction of ML models using high-level ab initio methods, for which energies and

forces only for 100s of conformations can be practically computed.

This predicament suggest that a tight integration between ML and physics is necessary

to close the gap between efficient FFs and accurate high-level ab initio methods. The key

idea explored in this thesis, is to take advantage of conserved quantities in dynamical pro-

cesses in addition to other fundamental physical laws to inform a universal approximator

without compromising its generality. Statistical inference is thus focused on the challeng-

ing aspects of the problem, while a priori knowledge about the atomic interactions is

represented exactly and artifact-free. As a result, we expect significant improvements in

data efficiency in the reconstruction process.

Turning this concept into a scientific contribution is a challenge that requires expertise

across both disciplines. It is important to recognize parallels and identify how related

problems have been approached in the past to avoid duplication of efforts or the pursuit

of fruitless endeavors. Ideally, this cross-pollination between fields will provide fresh

perspectives on long standing challenges, as the goals of ML and natural sciences are

somewhat complementary: Whereas natural laws represent concise descriptions of the

underlying mechanisms of a process, ML models can uncover regularities within obser-

vations without relying on such high-level concepts and thus help to discover causal

structures.

With those considerations in mind, we set out to construct FFs with the accuracy of

high-level ab initio calculations. We approach this challenge using principles of prob-

abilistic inference, which define a set of hypotheses and conditions them on the made

observations. The resulting predictions are particularly robust to overfitting, because

all viable hypotheses are always taken into account. Hilbert space learning algorithms

enable us to rigorously incorporate fundamental temporal and spatial symmetries of

atomic systems to create robust models for which parametrization from highly accurate,
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but costly coupled cluster reference data becomes viable. This development leads us

through the fields of computational physics, as well as operator, group, and optimization

theory. We use our models to carry out MD simulations at the coupled cluster level of

electronic-structure theory and provide insights into the dynamical behavior of molecules

with up to a few dozen atoms. To the best of our knowledge, we are first to allow converged

MD simulations with fully quantized electrons and nuclei at this scale.

1.1 Theoretical background

First, we will briefly introduce the relevant fundamentals of quantum mechanics that

crucially informed and motivated the development of our approaches. We begin with

the concept of the PES, which arises from the Born-Oppenheimer approximation to the

SE, as the solution for its electronic degrees of freedom. We will outline the hierarchy

of electronic structure methods most commonly used to solve the electronic SE and

review the numerical methods underpinning them. To complete the full approximation

of the SE, we turn our attention to dynamics of the nuclei, which are typically treated

classically in a process called MD simulation. Within that framework, a technique known

as path-integral MD (PIMD) provides a way to account for nuclear quantum effects [61]. In

preparation for the development of our PES models, we finally review Noether’s theorem

that formulates a connection between conservation laws and symmetries of physical

systems, providing valuable constraints for their behavior. Overall, this chapter attempts

to outline the fundamental reasons for the high computational complexity of ab initio

methods, which ultimately spurred our efforts documented in this thesis.

1.1.1 Ab initio quantum chemistry

Each measurable quantity in a physical system has an associated quantum mechanical

operator that describes it. The total energy of a system of electrons with coordinates r and

mass me, and nuclei with coordinates R and mass Mi , atomic number Zi , is described

by the Hamiltonian operator, as the sum of their kinetic and potential energies Ĥ =
T̂n + T̂e + V̂nn + V̂ee + V̂en with
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T̂n =−∑
i

1

2Mi
∇2
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ri
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∑
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∥Ri − r j∥
,

(1.1)

in atomic units. The operators T̂n, T̂e, V̂nn(R), V̂ee(r) and V̂en(r,R) represent the nuclear

and electron kinetic energy, as well as the nuclear-nuclear, electron-electron and nuclear-

electron interaction potentials, respectively. We can therefore obtain all possible outcomes

of a total energy measurement from the spectrum of the Hamiltonian. In other words,

solving a quantum mechanical problem entails the diagonalization of Ĥ . This gives rise to

the (non-relativistic and time-independent) SE

ĤΨi (r,R) = EiΨi (r,R), (1.2)

whereΨi are the eigenfunctions of the Hilbert space defined by the Hamiltonian, i.e. the

systems stationary states [62, 63]. Each eigenfunction describes the energy state for a given

energy Ei . The eigenfunction with the lowest energyΨ0 is referred to as the ground-state

wavefunction whereas all the other ones are excited state wavefunctions.

Born-Oppenheimer approximation

An almost universally used simplification of the SE, is the so-called Born-Oppenheimer

(BO) approximation, which separates the wavefunction Ψ(r,R) = ψe(r;R)ψn(R) into a

product of nuclear and electron terms. The underlying idea is that the much lighter elec-

trons can be assumed to adjust instantly to nuclear motion. On the electronic timescale,

nuclei are effectively stationary and almost act like an external potential on the elec-

trons [63]. With a Hamiltonian

Ĥel = T̂e + V̂nn + V̂ee + V̂en (1.3)

that only depends parametrically on the position of the nuclei, while neglecting their

motion, the SE can be solved for the electronic degree of freedom. The resulting electronic

energy is a function of nuclear coordinates, giving rise to the concept of a PES [62]. Many

properties of atomic structures can be explored in terms of the topography of that surface.

The corresponding nuclear SE forΨn(R) describes how the nuclei move on that PES

and it is solved independently to complete the approximation of the full wave function.
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Typically, nuclear motion is not treated in terms of quantum mechanics, but rather clas-

sically via integration of Newton’s equations of motion. This process is referred to as

a molecular dynamics (MD) simulation. With increasingly accurate descriptions of the

quantum mechanical behavior of electrons, the lack of nuclear quantum effects is however

starting to become a significant source or error [64]. Methods such as path integral MD

(PIMD) [65] can incorporate quantum mechanics into MD simulations, albeit at very high

additional computational cost.

Even within the BO approximation, the SE can not be solved analytically. Neither

is it possible to solve it using general grid-based techniques for boundary value partial

differential equations, due to the large number of degrees of freedom. Even at meager

resolution and without accounting for boundary conditions, a discretization grid would

be impossible to keep in memory. In practice, further approximations are necessary to

make interesting problems computationally tractable.

Variational optimization

Frequently, the so-called variational principle is used to estimate the lowest energy eigen-

state of the SE, the ground state E0. In this approach, the wavefunction is expanded in

an incomplete basis Ψ(p) with a number of adjustable parameters pi ∈ p. The energy

functional

E
[
p
]= ⟨

Ψ | Ĥ |Ψ⟩
〈Ψ |Ψ〉 ≥ E0 (1.4)

is subsequently minimized via gradient descent on the derivative ∂E/∂p. Due to this

discrete finite-dimensional parametrization, the SE reduces to an eigenvalue problem

(or generalized eigenvalue problem in the case of a non-orthogonal basis). Expanding

Ψ=∑N
i piφi in a linear basis is especially convenient, as it allows solving the SE in matrix

form. Because these trial wavefunctions usually do not span the full Hilbert space, the

true energy eigenstates Ei are approached from above with increasing quality of the basis,

allowing a systematic improvement of the solution [66].

1.1.2 Electron correlation

The simplest way to represent a wavefunction is to assume that it is composed of single-

particle basis functions, such that

ΨH(r1, . . . ,rN ) =φ1(r1)φ2(r2) · · ·φN (rN ). (1.5)
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Under this model assumption, the motion of the electrons is uncorrelated: each moves in

a mean field Coulomb potential induced by the other electrons. Unsurprisingly, this severe

simplification fails to capture some of the essential interactions due to the lack of pair-

wise and higher-order terms: first and foremost, instantaneous electron repulsion. One

important consequence of electron repulsion is described by the Pauli exclusion principle,

which says that two identical fermions (such as electrons) can never occupy the same

quantum state. This outcome can be enforced via anti-symmetry of the wavefunction,

such that

ΨHF(r1, . . . ,ri , . . . ,r j , . . . ,rN ) =−ΨHF(r1, . . . ,r j , . . . ,ri , . . . ,rN ). (1.6)

Anti-symmetrization requires a summation over all N ! possible electronic state configu-

rations in Eq. 1.5, which can however be expressed efficiently by means of the so-called

Slater determinant. Computing a determinant only takes O(N 3) steps, foregoing the

combinatorial cost of an explicit expansion. This set of approximations is known as the

Hartree-Fock (HF) scheme. Even in the infinite basis set limit, the HF method is not

accurate. It converges to the Hartree-Fock limit, overestimating the energy according to

the variational theorem of quantum mechanics [62, 66].

Because omitting electron correlation leads to serious deviations from experimental

results, several so-called post Hartree-Fock approaches reintroduce electron correlation in

controlled ways to improve the approximation under computational complexity consider-

ations. For brevity, we will not discuss them broadly and only give a short review of some

of the fundamental principles that most of them employ. We should remark at this point,

that none of these methods are computationally cheap, because all are fundamentally

restricted by the combinatorics of an interacting many-body system. The fact that the in-

teractions grow factorially with the number of electrons is inevitable. While this challenge

can be approached from many different angles, the cost-accuracy trade-off is principally

determined by the maximum interaction level that is being considered in the respective

method.

Configuration interaction

The configuration interaction (CI) method increases the flexibility of the wavefunction by

mixing elements of higher atomic orbitals from excited states into the ground state Slater

determinant. Again, a combinatorial expansion of the wavefunction

ΨCI = (1+ Ĉ1 +·· ·+ ĈN )ΨHF (1.7)
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is required, this time involving Slater determinants for the configurations in which elec-

trons are promoted from the occupied to the unoccupied orbitals. Here, Ĉi denotes the

excitation operator with i excited electrons, whose coefficients are once again determined

using variational optimization. With this extension of the HF method, changes to the

electronic distribution due to electron correlation can be captured, but the computational

complexity effectively restricts this approach to single (CIS) and double excitations (CISD).

While the doubly excited configurations are the most important, the effect of higher order

excitations is by no means negligible. Only in the limit of full configuration interaction

(full CI), the result is of the many-body SE will be exact [62, 66].

Coupled cluster

The coupled-cluster (CC) scheme is another numerical technique to treat correlation

based on HF or other trial wavefunctions. Instead of a linear excitation operator, CC uses

an exponential operator, which results in a product of configurations

ΨCC = exp(T̂)ΨHF = exp(T̂1 +·· ·+ T̂N )ΨHF (1.8)

for N electrons. A Taylor series expansion of the exponential exp(T̂) =∑
i

1
i ! T̂i reveals that

the powers of T̂ generate additional excited determinants, a superset that also includes

the CI form of the wavefunction. Once again, this expansion is only computationally

tractable if truncated early, typically after singly excited and doubly excited configurations

(CCSD). A common variant additionally accounts for the effect of triple excitations using

perturbation theory (CCSD(T)), which can have a substantial contribution [66]1. While

both variants are highly accurate, their scaling is poor, with O(N 6) and O(N 7), respectively.

This complexity severely limits the applicability of the CC method to small systems and

even then prevents sampling intensive tasks like long-timescale MD. Being the costliest

algorithm that sees regular use, the CC level of theory is widely considered to be the

’gold standard’ of quantum chemistry. Remarkably, it sometimes even exceeds the best

experimental results [67].

1.1.3 Density Functional Theory

An alternative to HF calculations is Density Functional Theory (DFT), which reduces the

many-body to a single-body problem involving the three-dimensional electronic density

ρ(r), rather than a 3N-dimensional many-electron wavefunction. This method makes

1A perturbative triples correction can of course also be added in the CI approach.
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solving the SE for correlated systems computationally practicable, while still accounting

for interaction effects, albeit approximately.

Hohenberg and Kohn [68] showed, that the energy of a system

E [ρ] =Ven[ρ]+T [ρ]+Vee[ρ] =
∫
ρ(r)v(r)d3r+T [ρ]+Vee[ρ] (1.9)

is fully determined by the electron density in its ground state. The electronic density is

therefore sufficient for the formulation of the Hamiltonian from which all observables of

the system can be derived. Here, T [ρ], Vee[ρ], and Ven[ρ] are functionals describing the

kinetic energy associated with the given electron density, as well as the electron-electron

and nuclear-electron (due to the BO approximation) interaction energies, respectively.

Since the nuclear-electron energy is simply expressed as the result of an interaction with

some field v(r), external interactions can be included in a straightforward way. Unfortu-

nately, the exact forms of T [ρ] and Vee[ρ] are unknown, with no available fundamental

theory from which they can be derived. In practice, these functionals need to be approxi-

mated, often based on experimental results, which is why DFT is considered to not be an

ab inito method [66].

To resolve that issue, Kohn and Sham [69] proposed to express the ground state density

in terms of a system of non-interacting pseudo-particles in independent orbitals φi , very

much like in the HF method. For this system, the electron density and kinetic energy,

ρ(r) =∑
i
φ2

i (r) and Ts[ρ] =−1

2

∑
i

⟨
φi | ∇2 |φi

⟩
(1.10)

are exact, just like the coulombic part of the electron repulsion energy J [ρ]. With that, the

total energy functional takes the form

E [ρ] =Ven[ρ]+Ts[ρ]+ J [ρ]+Exc[ρ], (1.11)

with Exc[ρ] = T [ρ]−Ts[ρ]+Vee[ρ]− J [ρ], (1.12)

where Exc[ρ] is the exchange-correlation functional. Kohn-Sham DFT gives a set of eigen-

value problems governed by an effective Hamiltonian

Ĥ KS(r) =−1

2
∇2 + vKS(r), Ĥ KSφi (r) = ϵiφi (r), (1.13)

which are solved variationally. Here, ϵi are the energies of the corresponding orbitals. [66]

The computational cost of DFT only scales with O(N 3), allowing the calculation of

reference datasets in the order of hundreds of thousands for small molecules. We can
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therefore use DFT to verify the correct behavior of our models in realistic long-timescale

simulations for the system sizes considered here. In contrast, only a few hundreds calcula-

tions can be performed using CCSD(T) in the same timeframe.

1.1.4 Molecular dynamics

So far, we have addressed the solution of the electronic structure problem, which is

only the first step in studying the dynamics of a molecular system according to the BO

approximation. To complete the picture, a description of the nuclear interaction is still

missing.

Most commonly, the principles of classical mechanics are employed to model the dy-

namics of nuclei, notwithstanding their quantum mechanical nature. Newton’s equations

of motion are integrated to propagate the evolution of nuclei on the PES in time. While

the potential energy for each configuration of nuclei can in principle be obtained using ab

initio methods, their computational cost bars access to sufficiently long simulation trajec-

tories necessary to ensure a converged sampling of the PES. One alternative is the use of

classical FFs, but their inaccuracy continues to take away from the predictive accuracy of

MD simulations. Thankfully, recent ML-based developments are slowly starting to bridge

the gap between accurate ab initio methods and efficient FFs.

MD simulations provide a picture of the dynamical behavior of an atomic system to

pursue the understanding of properties such as absorption spectra, rate constants, and

transport properties. The same methodology can be applied to study its macroscopic

properties, by simulating the probability distribution over its microscopic state. This

so-called statistical mechanical ensemble gives insight about its average thermodynamic

quantities (such as pressure, temperature or volume), structure, and free energies along

reaction paths [63, 70].

With increasing accuracy of the description of the PES, the significance of nuclear

quantum effects (NQEs) is gaining importance. Previously, the residual error caused

by omitting NQEs was considered negligible, in contrast to the inaccuracy of the PES

model [64]. Nowadays, the inclusion of NQE becomes mandatory, as a lack thereof be-

comes the primary cause of deviation from experiment. Even basic properties like densi-

ties, heats of vaporization, solvation energies and dielectric constants are misrepresented

without proper account of NQE [71].
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# beads

Full quantum descriptionClassical description

Figure 1.1 The path-integral molecular dynamics method approximates nuclear quantum effects
by exploiting an isomorphism between a P particle classical polymer and a quantum system. The
equilibrium averages of this polymer approximate the properties of the quantum particle. This
method is exact in the limit of the number of copies P →∞.

Nuclear quantum effects

A classical treatment of the nuclear dynamics is sufficiently accurate in many cases,

but sometimes nuclear quantum effects need to be accounted for due to significant

nuclear delocalization. For instance, this is the case in systems with light atoms, at low

temperatures or for shallow potential energy landscapes. NQEs such as zero-point energy

(ZPE) and tunnelling can induce significant deviations from the classical behavior. For

water, a prototypical case study within the context of NQEs, the importance of NQEs

has been demonstrated for ample of aspects [72]. Recent findings even demonstrate that

NQEs should not only be considered in strongly interacting systems, as previously thought,

but also in weak interaction as present in noble gases [73] and alkanes [74, 75].

One way of incorporating nuclear quantum effects (NQEs) is the path-integral molec-

ular dynamics (PIMD) method based on Feynman path integrals, which establishes a

one-to-one correspondence between the properties of a quantum object and a purely

classical system. A ’quantum’ atom becomes a ring polymer of P coupled replicas of a

classical atom (so called beads), connected by harmonic oscillators. The equilibrium

averages of the polymer approximate the properties of the quantum particle. In the limit

of the number of copies P →∞, convergence to full quantum statistics is guaranteed (see

Figure 1.1). This makes it possible to study quantum dynamic and thermodynamic, as

well as spectroscopic properties of a system using classical approaches, without needing

to solve the nuclear SE [76, 65, 1].

In practice, large P are required to obtain a good approximation of the correct quantum

result, multiplying the number of interatomic potential evaluations in each MD step. While

these evaluations are independent and can be parallelized, the computational burden
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increases by factor P just from the copies. Moreover, longer MD trajectories are needed

with growing number of beads, causing an overall non-linear scaling behavior. An accurate

treatment of NEQs is therefore computationally prohibitive in AIMD simulations as it

further compounds their already high computational cost.

1.1.5 Conservation laws

Conservation laws describe invariant properties of closed physical systems over time.

They are fundamental principles of nature that characterize symmetries that must not

be violated. Their big appeal is that they enable the description of macroscopic systems,

without the need to consider its microscopic details. As such, conservation laws provide

strong constraints on any description of a physical system.

Noether’s theorem [77] states that each conserved quantity is associated with a dif-

ferentiable symmetry of the action of a physical system. The action is represented as the

integral of the Lagrangian L over time

S =
∫ t2

t1

L
[
q(t ), q̇(t ), t

]
dt , (1.14)

with q̇ = ∂q/∂t . The behavior of any dynamical system is described by the trajectories

through phase space for which the action is stationary. A symmetry of a system is de-

fined as any coordinate qk that does not appear on the Lagrangian, with the results that

∂L/∂qk = 0. Then, we have for the Euler-Lagrange equation of motion

∂

∂t

(
∂L

∂q̇k

)
= ∂L

∂qk
= 0 → ∂L

∂q̇k
=C , (1.15)

where C is a constant and ∂L/∂q̇k is a conserved quantity, i.e. independent of time. For

example, in Cartesian coordinates, the conserved quantity ∂L/∂ẋ = mẋ is the linear mo-

mentum. Conserved quantities in Lagrangian systems include the total energy (following

from temporal invariance), as well as angular and linear momentum (roto-translational

invariance).

1.2 Description of chapters

This thesis is structured into three main parts. We have already given a brief introduction

of the basics of quantum mechanics and will now continue with the relevant ML concepts.

In the following, we will present the first main contribution of this thesis, which is the
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development of a gradient domain machine learning (GDML) approach for reconstructing

energy-conserving molecular force fields. We proceed with the development of a novel

multi-partite matching algorithm that is able to automatically identify and recover the

relevant static and dynamic molecular graph symmetries as represented in the data. It

allows us to construct data-efficient symmetric variants of our model (sGDML), tailored

to the specific spatial symmetries of the targeted molecule. Throughout, we carefully

verify the predictive capabilities of our models by applying them in MD simulations and

comparing the outcome with experimental results. Finally, we provide a user-friendly

software implementation of (s)GDML to make our results widely accessible.

Chapter 2: Hilbert space learning We introduce the theoretical foundations of Hilbert

space learning algorithms and cover the mathematical tools that will be used in the fol-

lowing chapters. Particular emphasis is placed on how to incorporate prior information

into GPs to construct especially data efficient and robust predictors. We adopt an opera-

tor perspective on the regression problem that allows a more intuitive incorporation of

operator constraints and conservation laws.

Chapter 3: Energy-conserving molecular force fields The definition of GPs is general-

ized to vector-valued outputs, enabling joint inference of multiple related properties with

set correlation structure. We use this formalism to define a predictor that explicitly maps

to energy conserving vector fields through the use of a specialized covariance function.

This allows the efficient reconstruction of molecular FFs in the gradient domain, solely

based on interatomic forces as reference. We demonstrate that our approach enables MD

simulations for molecules at DFT level of accuracy at a fraction of cost of explicit AIMD

calculations.

Chapter 4: Point groups and fluxional symmetries Building on the developments from

the previous chapter, we proceed with the incorporation of molecular point group and

fluxional symmetries into our model. This requires the development of a multi-partite

graph matching algorithm that enables the automated recovery of physically relevant

symmetries from the training set. These additional constraints help to reduce the data

requirements of our model even further and finally allow the construction of FFs from

even higher-level ab initio calculations. Extensive numerical experiments demonstrate

that our model enables path-integral MD simulations at quantum-chemical CCSD(T)

level of accuracy for flexible molecules with up to a few dozen atoms.
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1.3 Previously published work

Many results in this thesis have previously been published in journals. We focus on the

work documented in the following articles:

• Chmiela, S., Tkatchenko, A., Sauceda, H. E., Poltavsky, I., Schütt, K. T., Müller, K.-R.

(2017) "Machine Learning of Accurate Energy-conserving Molecular Force Fields".

In: Science Advances, 3(5), e1603015.

• Chmiela, S., Sauceda, H. E., Müller, K.-R., Tkatchenko, A. (2018) "Towards Exact

Molecular Dynamics Simulations with Machine-Learned Force Fields". In: Nature

Communications, 9(1), 3887.

• Chmiela, S., Sauceda, Poltavsky, I., H. E., Müller, K.-R., Tkatchenko, A. (2019)

"sGDML: Constructing Accurate and Data Efficient Molecular Force Fields Using Ma-

chine Learning". In: Computer Physics Communications, 10.1016/j.cpc.2019.02.007

Additional co-authored publications and are listed in the following.

• Schütt, K. T., Arbabzadah, F., Chmiela, S., Müller, K. R., Tkatchenko, A. (2017)

"Quantum-chemical insights from deep tensor neural networks". In: Nature Com-

munications, 8, 13890.

• Schütt K. T., Kindermans, P.-J. , Sauceda, H. E. , Chmiela, S. , Tkatchenko, A. , Müller,

K.-R. (2017) "SchNet: A continuous-filter convolutional neural network for modeling

quantum interactions.". In: Advances in Neural Information Processing Systems, 31,

pages 991–1001.

• Sauceda, H. E., Chmiela, S., Poltavsky, I., Müller, K.-R., Tkatchenko, A. (2019) "Molec-

ular Force Fields with Gradient-Domain Machine Learning: Construction and Ap-

plication to Dynamics of Small Molecules with Coupled Cluster Forces". In: The

Journal of Chemical Physics, 150, 2019, 114102.





Chapter 2

Hilbert space learning

Supervised ML infers a relationship between pairs of inputs x ∈X and associated outputs

y ∈Y from on a finite training set of M examples. The objective is to formulate a hypothe-

sis that generalizes beyond these known data points, which is estimated by measuring

the prediction error of the model on an independent test set. For obvious reasons, it is

desirable for ML models to be data efficient, in the sense that their generalization error

falls quickly with growing training set size. Efficiency is particularly important when the

dataset is compiled from computationally expensive high-level ab initio calculations. After

all, proxy models are only practical if the full procedure of data generation, training and

inference outpaces the method they imitate. This is a challenge, as many ML algorithms

have been developed under the assumption that data is abundant. For example, recent

deep learning architectures require hundreds of thousands or even millions of data points

until they are able to give useful predictions. Because their non-convex cost function

mandates numerical solvers, the reconstruction of a potential for a single small molecule

can therefore take several days, even on modern GPU hardware.

A more efficient alternative is provided by Hilbert space learning algorithms, as they

operate in spaces of functions that match prior beliefs about the observed process. While

a small number of training points is not enough to reconstruct general functions, it might

be sufficient to constrain a well-behaved function space. This is alluring, because even

complex physical processes involve quantities with well understood properties that can

be exploited to define the structure of those Hilbert spaces. One additional benefit is that

Hilbert spaces arise naturally from various problem formulations in physics and thus

mediate between the two disciplines.
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2.1 Hilbert spaces

A Hilbert space H is a vector space over R with an inner product that yields a complete

metric space. The inner product gives rise to a norm ∥x∥ = p〈x,x〉, which induces a

distance metric d(x,x′) = ∥x−x′∥, for x,x′ ∈H. Although any N -dimensional Euclidean

space RN is technically a Hilbert space, this formalism becomes particularly interesting in

infinite dimension, where H is a space of functions, while retaining almost all of linear

algebra from vector spaces.

2.1.1 Reproducing kernels

Many ML algorithms make use of infinite dimensional Hilbert spaces indirectly via the

kernel-trick, which allows to express inner products of mappingsΦ :X →H in terms of

inputs x ∈X via a kernel function k :X ×X →R:

k(x,x′) = 〈Φ(x),Φ(x′)〉H. (2.1)

Eq. 2.1 holds true for any symmetric and positive semi-definite kernel, i.e. it is required

that k(x,x′) = k(x′,x) and any linear combination f =∑
i αiΦ(xi ) with αi ∈R must satisfy

〈 f , f 〉H =∑
i j
αiα j k(xi ,x j ) ≥ 0. (2.2)

These two properties guarantee the reproducing property of H

f (x) = 〈k(·,x), f 〉H, (2.3)

due to which any evaluation of f corresponds to an inner product evaluation inH between

the representer k(·,x) =Φ(x) of x and the function itself. We say that k is reproducing for a

subset of H, the reproducing kernel Hilbert space (RKHS). Intuitively, this means that the

feature mapsΦ(xi ) for all training points i ∈ [1, . . . , M ] provide an over-complete basis for

the RKHS [78].

2.1.2 Representer theorem

The computational tractability of Hilbert space learning algorithms is afforded by the

representer theorem which states that in an RKHS H, the minimizer f̂ ∈H of a loss function
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k(�x, �x) = exp(−‖�x − �x′‖2)

Squared exponential covariance

k(�x, �x) = exp(−‖�x − �x′‖)

Exponential covariance

Figure 2.1 Example functions drawn from GP priors based on different types of covariance func-
tions. The squared exponential kernel defines a smooth, infinitely differentiable space of solutions
(left), whereas the exponential kernel gives rise to non-differentiable functions (right). A well-
defined hypothesis space can drastically simplify the learning problem.

L :Y ×Y →R in a regularized risk functional with λ> 0,

f̂ = arg min
f ∈F

[
1

M

M∑
i
L( f (xi ), yi )+λ∥ f ∥2

]
, (2.4)

admits a representation of the form

f (·) =
M∑
i
αi k(·,xi ) (2.5)

for any αi . It therefore reduces the infinite-dimensional minimization problem in a

function space to finding the optimal values for a M-dimensional vector of coefficients

α [79–81]. Because we are not fitting a model with a fixed number of predetermined

parameters, Hilbert space algorithms are generally regarded as non-parametric methods.

2.2 Gaussian process models

When formulated in terms of the squared loss L( f̂ (x), y) = ( f̂ (x)− y)2, the regularized

risk functional in Eq. 2.4 can be interpreted as the maximum a posteriori estimate of a

Gaussian process (GP) [81]. One common perspective on GPs is that they specify a prior

distribution over a function space. GPs are defined as a collection of random variables

that jointly represent the distribution of the function f (x) at each location x and thus as

a generalization of the Gaussian probability distribution from vectors to functions. This

conceptual extension makes it possible to model complex beliefs.

At least in part, the success of GPs – in contrast other stochastic processes – can

be attributed to the fact that they are completely defined by only the first- and second-
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order moments, the mean E[ f (x)] = µ(x) and covariance k(x,x′) for all pairs of random

variables [82]:

f (x) ∼GP [
µ(x),k(x,x′)

]
. (2.6)

Any symmetric and positive definite function is a valid covariance that specifies the prior

distribution over functions we expect to observe and want to capture by a GP. Altering this

function can change the realizations of the GP drastically: e.g. the squared exponential

kernel k(x,x′) = exp(−∥x−x′∥2σ−1) (with a freely selectable length-scale parameters σ)

defines a smooth, infinitely differentiable function space, whereas the exponential kernel

k(x,x′) = exp(−∥x− x′∥σ−1) produces a non-differentiable realizations (see Figure 2.1).

The ability to define a prior explicitly, gives us the opportunity to express a wide range

of hypotheses like boundary conditions, coupling between variables or different sym-

metries like periodicity or group invariants. Most critically, the prior characterizes the

generalization behavior of the GP, defining how it extrapolates to previously unseen data.

Furthermore, the closure properties of covariance functions allow many compositions,

providing additional flexibility to encode complex domain knowledge from existing simple

priors [83].

The challenge in applying GP models lies in finding a kernel that represents the struc-

ture in the data that is being modeled. Many kernels are able to approximate universal

continuous functions on a compact subset arbitrarily well, but a strong prior restricts

the hypothesis space and drastically improves the convergence of a GP while preventing

overfitting [84]. Each training point conditions the GP, which allows increasingly accurate

predictions from the posterior distribution over functions with growing training set size.

A number of attractive properties beyond their expressivity make GPs particularly

useful in the physical sciences:

• There is a unique and exact closed form solution for the predictive posterior, which

allows GPs to be trained analytically. Not only is this faster and more accurate than

numerical solvers, but also more robust. E.g. choosing the hyper-parameters of

the numerical solver for NNs often involves intuition and time-consuming trial and

error.

• Because a trained model is the average of all hypotheses that agree with the data,

GPs are less prone to overfit, which minimizes the chance of artifacts in the recon-

struction [85]. Other types of methods that start from a more general hypothesis

space require more complex regularization schemes.
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• Lastly, their simple linear form makes GPs easier to interpret, which simplifies

analysis of the modeled phenomena and supports theory building.

2.2.1 Gaussian process regression

It is straightforward to use GPs for regression: Given a sample (X,y) = {(xi , yi )}M
i , we

compute the sample covariance matrix (K)i j = k(xi ,x j ) and use the posterior mean

µ(x) = E[ f (x)] = kX(x)⊤(K+λ1)−1y (2.7)

to make predictions about new points x. Here, kX(x) = [k(x,x1), . . . ,k(x,xM )]⊤ is the vec-

tor of covariances between the new point x and all training points. In the frequentist

interpretation, this algorithm is also referred to as kernel ridge regression.

We can also calculate the variability of the hypotheses at every point via the posterior

variance

σ2(x) = E
[(

f (x)−µ(x)
)2

]
= k(x,x)−kX(x)⊤(K+λ1)−1kX(x), (2.8)

which gives us an idea about the uncertainty of the prediction. We remark here, that the

posterior variance is generally not a measure for the accuracy of the prediction. It rather

describes how well the hypothesized space of solutions is conditioned by the observations

and whether the made assumptions are correct.

2.3 Encoding prior information

Prior knowledge about the problem at hand is an essential ingredient to the learning task,

as it can drastically increase the efficiency of the training process and robustness of the

reconstruction. A ML model that starts from a general set of assumptions will require

more training data to achieve the same performance, compared to one that is restricted to

solutions with certain known properties. A unique feature of GPs is that they provide a

direct way to incorporate such constraints on the hypothesis space [78].

In the context of this thesis, we are particularly interested in regularities that arise from

invariances and symmetries of physical systems. The idea to reduce equations in a way

that leaves them invariant is not new in physics. In fact, Jacobi already developed a proce-

dure to simplify Hamiltons dynamical equations of mechanics based on the conserved

quantities of dynamical systems [86] in the middle of the eighteenth century. Heisenberg

was the first to apply group theory to quantum mechanics, were he exploited the permuta-
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tional symmetry of indistinguishable quantum particles in 1926. Even in modern physics,

new symmetries are still routinely discovered [87].

Often, these can be expressed in simple terms, although they originate from complex

interactions. It is a fascinating prospect that those regularities can be exploited without

an understanding of the underlying principles that cause them. In that sense, statistical

models allow us to describe a system long before we fully understand them, which can

provide insights that would not be possible otherwise. In contrast, traditional FFs are

restricted to prescribed interaction patterns and are not able to recover new structure

from data.

In this chapter we will review the three most important ways to include prior knowl-

edge in GPs: indirectly via composition of the training dataset and directly by construction

of suitable mean and covariance functions. The choice of covariance function is especially

important, which is why we will describe several distinct ways to construct them.

2.3.1 Observations

It is easy to see that the composition of the training dataset plays a crucial role in how well

a GP predictor will perform. Not only can the distribution of the training dataset reflect

prior knowledge, likewise the kind of observable and its representation set the focus on

what is believed to be important for the inference task at hand.

Sampling process

Every datapoint in the training set reflects a small amount of knowledge about some

unknown process that we aim to recover. Most individual training points are rather

insignificant on their own, because they only provide extremely localized information,

unless they represent boundary conditions or important topographical features, like

extrema. Seen as a sampling distribution however, they collectively carry additional high-

level information. For example, trajectories of dynamic processes are often multi-modally

distributed, revealing the preferred configurational states of a system. The frequency

of occurrence of each configurational state is proportional to the probability that it is

visited. It might therefore be desirable to bias the sampling towards the frequently visited

states to promote a more accurate reconstruction in those areas. Other applications might

call for a uniform sampling scheme, that assigns equal importance to all states. Clearly,

the sampling process influences how well the trained model will perform in various

applications, giving rise to a variety of different stratification and active learning [11, 43,

55, 56, 60] techniques.
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What observable is measured during the sampling process is equally important. Are we

making experimental measurements with a large noise floor or collecting essentially exact

ab initio reference calculations? Can we gather more information per sample location

that just the function value, e.g. by taking derivative observations [88, 89], compressed

measurements [90] or group-level statistics [91]?

Developing a good sampling scheme is non-trivial in many cases and often requires

domain expertise. It contributes to a successful reconstruction to a significant degree.

Representation

Once the data is captured, it needs to be represented in terms of features that are con-

sidered to be particularly informative, i.e. well-correlated with the prediction target. For

example, parametrizing a molecular graph in terms of dihedral angles instead of pairwise

distances might be advantageous when modeling complex transition paths.

The representation of the data also provides the first opportunity to incorporate known

invariances of the task at hand. Especially in physical systems, certain transformations

conserve its properties, which introduces redundancies that can be exploited with a repre-

sentation that shares those invariances. E.g. physical systems can generally be translated

and rotated in space without affecting their attributes. Often, the invariances extend

to more interesting group of transformations like rotations, reflections or permutations,

providing further opportunities to reformulate the learning problem into a simpler, but

equivalent one. Conveniently, any non-linear map D :X →D of the input to a covariance

function yields another valid covariance function, providing a direct way to incorporate

desired invariances into existing kernels [92].

2.3.2 Covariance function

Symmetries in the input data naturally translate to symmetries in the output. If a molecular

graph is mirror symmetric, so will be its potential energy surface. However, sometimes

there is structure in the output that is not tied to the input at all. This is the case when the

predicted property is subject to a conservation law, e.g. the energy of a system is conserved

as its geometry transforms through time. There is no representation of individual data

points that would be able to capture this kind of symmetry.

Instead, conservation laws have to be incorporated as constraints into the predictor, to

restrict the space of feasible solutions. This is achieved elegantly in GPs, via modification of

the covariance function in a way that gives rise to a prior that obeys the desired symmetry.

Any function drawn from that prior will then inherit the same invariances [78, 82]. Before
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developing a covariance function that fits our problem, we will briefly highlight different

ways to construct them. After all, arbitrary functions of two inputs x,x′ ∈ X are not

necessarily valid covariance functions. For that purpose we will switch away from the

probabilistic view that we held so far and provide a perspective that is more intuitive in

the physics context.

Integral transforms

We can think of the covariance function as a kernel of an linear integral transform that

defines an operator

T̂k f (x) =
∫
X

k(x,x′) f (x′)dx′, (2.9)

which maps a function f (x) from one domain to another [82, 93]. In this view, T̂k f (x) =
f̂ (x) corresponds to the posterior mean of our GP. Note, that T̂k f (x) remains a continuous

function, even if we discretize the integration domain. This is the case in the regression

setting, when we are only able to observe our target function partially. With that in mind,

an integral operator can be regarded as a continuous generalization of the matrix-vector

product using a square matrix with entries (K)i j = k(xi ,x j ) and a vector α. Then,

(Kα)i =
M∑
j

k(xi ,x j )α j (2.10)

is the discrete analogon to T̂k f (x) [94]. Note, that this expression is closed under linear

transformation: any linear constraint Ĝ[T̂k ] propagates into the integral and gives rise to a

new covariance function.

However, there are several alternative construction options, one of them through

explicit definition of the frequency spectrum of T̂k . Due to the translational symmetry of

physical systems, we are particularly interested in stationary covariance functions that

only depend on pairwise distances δ= x−x′ between points. In that setting, Bochner’s

theorem says that symmetric, positive definite kernels can be constructed via the inverse

Fourier transform of a probability density function p(δ) in frequency space [92, 93, 82, 95]:

k(δ) =F (p(δ)) =
∫

p(ω)e−iω⊤δdω. (2.11)

The following perspective might however be more intuitive when approaching this

problem form a physics background: Since T̂k f (x) is the reconstruction from point-wise

observations yi = f (xi ), we are ideally looking for an operator that leaves our unknown
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target function invariant, such that T̂k f (x) = f (x). This is another way of saying that our

estimate f̂ (x) lives in the space spanned by the eigenfunctions ϕi ∈ F of the operator

defined by the kernel function (with coefficients ci ∈R), giving

f̂ (x) =∑
i

ciϕi (x) with T̂kϕi =λiϕi . (2.12)

It is impossible to overlook that there is a strong analogy between the covariance func-

tion in a GP process and the Hamiltonian in the SE. Both operators formulate constraints

that give rise to Hilbert space of possible states of the modeled object, whether it is the

wavefunction or the hypothesis space of the GP. Although this is where the similarities

end, this connection certainly illustrates that GPs are particularly suitable to reconstruct

physical processes in a principled way.

Example

Consider the squared exponential (SE) kernel

kSE(x,x′) = exp

(−∥x−x′∥2

σ

)
. (2.13)

What prior information does it encode? It turns out, that it encodes the most basic

and in fact, a necessary condition for any reconstruction problem: the smoothness

assumption. Reconstruction is only possible, if there is some underlying regularity,

i.e. if similar inputs produce similar outputs. Only then can we extrapolate from a

limited number of observations.

It is more intuitive to think about smoothness in terms of the power spectrum in the

frequency domain [93]. A smooth function is called band-limited, because it only

carries negligible energy after a certain cut-off frequency. This is the case for the SE

kernel, as the power spectrum representation of its Fourier transform reveals (which

is another SE function). To see how a kernel affects the prediction, we rewrite Eq. 2.9

in the frequency domain, with Fourier transform F ,

F (Tk f (x)) =F (k(x,x′))F ( f (x′)) (2.14)

and observe that the prediction decomposes into the product of the spectrum of the

kernel and the spectrum of the observed function. In the case of the SE, F (k(x,x′))

attenuates the energy in the high frequencies as it slowly approaches zero. The SE

kernel thus acts like a low-pass filter that lets smooth functions pass unaffected. If

the function is too complex, it recovers the low frequency portion of signals.
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2.3.3 Mean function

In most applications, the GP prior mean function µ(x) = 0 is set to zero, which leads to

predictions f̂ (x) ≈ 0 as ∥x− x′∥ → 0 for stationary kernels. Convergence to a constant

outside of the training regime is desirable for data-driven models, because it means that

the prediction degrades gracefully in the limit, instead of producing unforeseeable results.

However, if a certain asymptotic behavior of the modeled function is known, the prior

mean function offers the possibility to prescribe it. For example, we could introduce a log

barrier function

µ(x) =− log(b−x) (2.15)

that ramps up the predicted quantity towards infinity for x ≥ 0. In a molecular PES model,

such a barrier would represent an atom dissociation limit, which could be useful to ensure

that a dynamical process stays confined to the data regime.

In the spirit of how the Slater determinant accounts for the average affect of electron

repulsion without explicit correlation, the mean of a GP is used to prescribe a sensible

predictor response outside of the data regime.

2.4 Summary

In this chapter we have reviewed the general concept of Hilbert space learning and dis-

cussed how it relates to GPs. This powerful formalism provides various ways in which

the natural invariances of the data can be taken into account, to construct highly data

efficient predictors without loss of generality.

We have attempted to highlight conceptual similarities between the Hamiltonian and

GP covariance functions, by introducing the operator interpretation of the regression

problem. In this view, the reconstructed function lies in the eigenspace of the integral

operator defined by the covariance function. Via its closure properties, this space of

solutions can be shaped, e.g. by imposing linear operator constraints like conservation

laws and symmetries. Stationary covariance functions can be alternatively constructed via

direct specification of the frequency spectrum and subsequent inverse Fourier transform.

The asymptotic behavior of the GP is controlled via the mean function. We have proposed

the introduction of a log barrier function to approximate a realistic predictor response as

the molecule approaches the dissociation limit.
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In the following two chapters we will get more specific and use these techniques

to construct an efficient and accurate ML model that encodes all spatial and temporal

symmetries of PESs for small molecules.





Chapter 3

Energy-conserving molecular force fields

Partial results of the presented work have been published in:

• Chmiela, S., Tkatchenko, A., Sauceda, H. E., Poltavsky, I., Schütt, K. T., Müller,

K.-R. (2017) "Machine Learning of Accurate Energy-conserving Molecular

Force Fields". In: Science Advances, 3(5), e1603015.

A fundamental property that any force field F(r1,r2, . . . ,rN ) must satisfy is the conserva-

tion of total energy, which implies that F(r1,r2, . . . ,rN ) =−∇E(r1,r2, . . . ,rN ). Any classical

mechanistic expressions for the potential energy (also denoted as classical FF) or an-

alytically derivable ML approaches trained on energies satisfy energy conservation by

construction. However, even if conservation of energy is satisfied implicitly within an

approximation, this does not imply that the model will be able to accurately follow the

trajectory of the true ab initio potential, which was used to fit the force field. In particular,

small energy/force inconsistencies between the force field model and ab initio calcula-

tions can lead to unforeseen artifacts in the PES topography, such as spurious critical

points that can give rise to incorrect molecular dynamics (MD) trajectories. Another

fundamental problem is that classical and ML force fields focusing on energy as the main

observable have to assume atomic energy additivity – an approximation that is hard to

justify from quantum mechanics.

In this chapter, we present a robust solution to these challenges by constructing an

explicitly conservative ML force field, which uses exclusively atomic gradient information

in lieu of atomic (or total) energies. In this manner, with any number of data samples, the

proposed model fulfills energy conservation by construction. Obviously, the developed

ML force field can be coupled to a heat bath, making the full system (molecule and bath)

non-energy-conserving.
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We remark that atomic forces are true quantum-mechanical observables within the BO

approximation by virtue of the Hellmann-Feynman theorem. The energy of a molecular

system is recovered by analytic integration of the developed gradient-domain machine

learning (GDML) model. We demonstrate that our approach is able to accurately repro-

duce global PESs of intermediate-sized molecules within 0.3 kcal mol−1 for energies and 1

kcal mol−1 Å−1 for atomic forces relative to the reference data. This accuracy is achieved

when using less than 1000 training geometries to construct the GDML model and using

energy conservation to avoid overfitting and artifacts.

3.1 Local linearizations of the PES

We have established in the previous chapter that regularity in the target function is a

necessary condition for a successful reconstruction from a limited number of observations.

This requirement is satisfied by the PES, which changes smoothly as the geometry of the

physical system evolves. Observing the energy of one configuration gives us a good

idea about the energy of other geometries in its immediate neighborhood. Sudden, non-

continuous energy jumps are physically impossible, because they would require an infinite

force acting on at least one of the atoms.

Due to that smoothness, we can locally linearize a PES without uncontrollably in-

creasing the approximation error. A linearization can be parametrized from only a few

perturbations f (xi +ϵ) ≈ f (xi )+∇xi f (xi )ϵ on the PES, while potentially replacing a much

larger amount of expensive evaluations that would have been necessary otherwise. This

raises the question, whether it is possible to condition a GP using linearizations directly,

as a replacement for multiple neighboring training points. A significant improvement of

the convergence rate of the learning algorithm with respect to training set size would be

the outcome.

3.1.1 Hellman-Feynman theorem

Clearly, the ability to learn local linearizations is particularly appealing when the target

function is a known process with available derivatives, like in the case of the PES. When

obtained directly, without resorting to numerical approximation, linearizations can not

only increase the efficiency of the learning algorithm, but also decrease signal acquisi-

tion cost. The Hellmann-Feynman theorem indeed provides a way to obtain analytical

derivatives. It relates changes in the total energy ∂E with respect to any variation ∂λ of the
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Hamiltonian through the expectation value

∂E

∂λ
=

⟨
Ψλ

⏐⏐⏐∂Ĥλ

∂λ

⏐⏐⏐Ψλ

⟩
, (3.1)

which allows the direct computation of forces F =−∂E/∂R as derivatives with respect to

nuclei positions R. In the case of DFT, forces can just as well be expressed in terms of

electron density ρ(r) =Ψ2(r),

F =−∂E

∂R
=−

∫
∂Vext(r,R)

∂R
ρ(r)dr, (3.2)

when no wave-function is explicitly available. They only depend on the potential energy

due to the external field Vext(r,R), as it is the only functional involving nuclei positions [96,

97].

Once the SE is solved for a particular atomic configuration to compute the energy,

this theorem makes the additional computation of forces relatively cheap, by reusing

some of the results. The fascinating part is that force observations are considerably

more informative, as they represents a linearization of the PES in all directions of the

3N -dimensional configuration space. Gathering a similar amount of insight about the

PES numerically, would require solutions of the SE for at least 3N + 1 perturbations

E(r1, . . . ,ri + ϵ, . . . ,r3N ) of the original geometry at each point. Even then, the obtained

force would be subject to approximation error and oftentimes inconsistent with the energy

measurement. In contrast, computing analytical forces using Hellman-Feynman theorem

only requires 1−7 times the computational effort of a single energy calculation. Effectively,

this theorem thus offers a more efficient way to sample PESs.

In the next section, we will develop a GP with an associated Hilbert space of energy

conserving vector-valued functions, which will enable us to formulate the PES reconstruc-

tion problem in the gradient domain and thus allow us to make efficient use of those

analytic forces.

3.1.2 Noise amplification by differentiation

A reconstruction of high-dimensional signals from derivative observations increases data-

efficiency, but more crucially, also leads to a better representation derivatives in the model.

While most empirical models based on point evaluations of the target function have

an analytical form that allows a posteriori differentiation (see Figure 3.3), the resulting

derivative estimates are not regulated within the loss function of the model and a faithful

reconstruction is hence not guaranteed. Inevitably, this can lead to artifacts.
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Figure 3.1 A noisy approximation of a sine wave (blue). Although all instantaneous values are
represented well, the derivative of the approximation is a poor estimator for the true derivative. This
is because differentiation amplifies the high frequency noise component within the approximation
(middle). Integration on the other hand acts as a low-pass filter (right) that attenuates noise. It is
therefore easier to approximate a function with accurate first derivatives from derivative examples
instead of function values. Note that integrals are only defined up to an additive constant, which
needs to be recovered separately.

It is widely accepted, that reconstructions of functions based on a limited number of

observations will generally not be error-free, either due to aliasing effects, non-ideal choice

of hypothesis space or noisy training data [80]. Furthermore, the use regularization terms

in the loss function of ML models will promote these errors into the high-frequency band

of the residual error function. Unfortunately, the application of the derivative operator

amplifies high frequencies ω with increasing gain [98], drastically magnifying these errors.

The derivative of a model f̂ ′ in the frequency domain is

F [
f̂ ′]= iωF [

f̂
]

, (3.3)

were F [ f̂ ] is its Fourier transform (see Figure 3.1). A low test error does therefore not

necessarily imply that an energy-trained PES model also reconstructs the forces of the

target function reliably.

Several de-noising schemes have been developed as a post-processing step, e.g. via

low-rank projection by means of principal component analysis (PCA) [99–102]. We note

however, that these approaches only treat symptoms without addressing their cause. In

the next section, we will develop an approach to construct FFs that are energy-conserving

a priori, thus avoiding the application of the noise-amplifying derivative operator to a

parameterized PES model.
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Figure 3.2 The construction of ML models: First, reference data from an MD trajectory are sampled.
(a) The geometry of each molecule is encoded in a descriptor. This representation introduces
elementary transformational invariances of energy and constitutes the first part of the prior. A
kernel function then relates all descriptors to form the kernel matrix – the second part of the prior.
The kernel function encodes similarity between data points. Our particular choice makes only
weak assumptions: It limits the frequency spectrum of the resulting model and adds the energy
conservation constraint. Hess, Hessian. (c) These general priors are sufficient to reproduce good
estimates from a restricted number of force samples. (b) A comparable energy model is not able to
reproduce the PES to the same level of detail.
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3.2 Gradient domain machine learning (GDML)

The GDML approach explicitly constructs an energy-conserving force field, avoiding

the application of the noise-amplifying derivative operator to a parameterized potential

energy model. This can be achieved by directly learning the functional relationship

f̂F : R = {r1,r2, . . . ,rN }
ML−−→ F (3.4)

between sets of atomic coordinates and interatomic forces, instead of computing the

gradient of the PES model (see Figure 3.2, c and b). This requires constraining the solution

space of all arbitrary vector fields to the subset of energy-conserving gradient fields. The

PES can be obtained through direct integration of f̂F up to an additive constant. To

construct f̂F, we use a generalization of common scalar-valued GPs for structured vector

fields [103–105].

3.2.1 Multiple output GPs

In the simplest, and by far most prevalent regression setting, a single output variable y

is predicted from an input vector x. While this seems like the natural way to cast the

PES reconstruction problem at first glance, a direct energy prediction approach carries

significant disadvantages in practice, as discussed previously. Instead of reconstructing

the PES directly, we will thus pursue the reconstruction of the associated force field, i.e. the

negative gradient of the PES (see schematic in Figure 3.3). This somewhat unconventional

approach constitutes a considerably more complex multiple output regression problem

with vector-valued labels y. It appears at first, that the higher dimensionality of the

prediction target would nullify the advantages afforded by derivative measurements, but

we will demonstrate later how a physically motivated formulation of the learning problem

can prevent that.

Naively, and without any knowledge about the properties of the predicted vector field,

we would model each output variable separately and treat them as independent, implicitly

assuming that the individual outputs do not affect each other. Such a vector-valued

estimator would take the form

f̂(x) = [ f̂1(x), . . . , f̂N (x)]⊤, (3.5)

where each component is a separate scalar-valued GP [106]. However, an independence

assumption is hard to justify in many practical multi-output scenarios. For the force field

reconstruction task, we can say with certainty that a coupling between output dimensions
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R = {�ri = (r1, r2, r3)
T
i }N

i=1 E : R3N → R

F : R3N → R3N

f̂E

∇f̂E

f̂F

∫
f̂F

PES

FF

a posteriori

a priori

Energy conservation:

Figure 3.3 Differentiation of a PES estimator (blue) versus direct force field reconstruction (red).
The law of energy conservation is trivially obeyed in the first case, but requires explicit a priori
constraints in the latter scenario. Both approaches yield estimates for energy and forces, but a
direct reconstruction of the force fields avoids the amplification of estimation errors due to the
derivative operator. The challenge in estimating force fields directly lies in the complexity arising
from their high 3N -dimensionality.

is present due to the global nature of atomic interactions. But even if the output channels

were independent a priori, correlations between the individual noise processes associated

with each component could introduce dependencies in the posterior process [82]. An

artificial decoupling would therefore ignore valuable information and yield suboptimal

estimates.

This would be an unfortunate conclusion, because multivariate output dependencies

can be naturally captured by GPs through the correlation structure of the prior. Instead of

mapping to scalar outputs, we can model the covariance function as a matrix k :X ×X →
RN×N that expresses the interaction among multiple output components. Together with a

vector-valued mean functionµ :X →RN , we can then sample realizations of vector-valued

functions from the GP

f(x) ∼GP [
µ(x),k(x,x′)

]
. (3.6)

In this setting, the corresponding RKHS is vector-valued and it has been shown that the

representer theorem continues to hold [107]. Each component of the kernel function

(k)i j specifies a covariance between a pair of outputs fi (x) and f j (x), which makes it

straightforward to impose linear constraints g(x) = Ĝ [f(x)] on the GP prior

g(x) ∼GP
[
Ĝµ(x),Ĝ k(x,x′)Ĝ ′⊤

]
. (3.7)

and hence also the posterior [108, 103, 109, 110]. Here, Ĝ and Ĝ ′ act on the first and second

argument of the kernel function, respectively. Linear constraints include simple conser-

vation laws, but also operations like differential equations, allowing the construction of

models that are consistent with the laws that underpin many physical processes [111–115].
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Ground truth Examples General vector field Conservative field Solenoidal field

= +

Helmholz decompositionf̂

f̂−

Figure 3.4 Modeling gradient fields (leftmost subfigure) based on a small number of examples.
With GDML, a conservative vector field estimate f̂ is obtained directly (purple). In contrast, a naïve
estimator f̂− with no information about the correlation structure of its outputs is not capable to
uphold the energy conservation constraint (blue). We perform a Helmholtz decomposition of the
naïve non-conservative vector field estimate to show the error component due violation of the
law of energy conservation (red). This significant contribution to the overall prediction error is
completely avoided with the GDML approach.

Single output GPs are included as a special case in this multiple output generalization:

setting the matrix-valued kernel function k(x,x′) = k(x,x′)1N to a diagonal matrix treats all

outputs as independent and hence recovers the decoupled-output GP.

3.2.2 Conservative vector-valued GPs

The correlation between dimensions Fi (R) in a FF follows directly from F(R) =−∇E(R).

Unless the energy E decomposes without loss into contributions of its individual free

parameters ri ∈ R, so that

E(R) = E(r1)+·· ·+E(rN ) and thus Fi (R) =−∂E(ri )

∂ri
, (3.8)

its partial derivatives are correlated and can not be modeled independently. We therefore

aim to construct a GP that inherits the correct structure of a conservative force field in

order to increase the accuracy of the predictor and to ensure integrability, so that the

corresponding energy potential can be recovered from the same model.
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Example

We illustrate the benefit of energy conservation with the help of a two-dimensional

toy problem: a synthetic potential created by two harmonic oscillators along the co-

ordinate axes (see Figure 3.4). We wish to reconstruct this potential from a sparse set

of gradient measurements ∇ f (xi ) at locations xi = [x1, x2]⊤i . Although this potential

can be decomposed according to Eq. 3.8, we will not leverage that prior knowledge

for the purpose of our example.

Instead, we train a naïve estimator f̂−(x) = [
f̂ −

1 (x), f̂ −
2 (x)

]⊤
that disregards any re-

lationship between the two partial derivatives. It consists of two independent

zero-mean GP models f̂ −
i : R2 → R that both use the squared exponential kernel

as covariance function. Note, that each f̂ −
i depends on both inputs in x. In gen-

eral, the predictions made by this naïve estimator are non-conservative, as can be

demonstrated via a potentially non-vanishing curl

∇× f̂− =
(
∂ f̂ −

2

∂x1
− ∂ f̂ −

1

∂x2

)
e3 ̸= 0, (3.9)

where e3 = [0,0,1]⊤ is the standard basis vector for the third coordinate axis. It is easy

to tell from that definition, that a coupling between both outputs is indispensable

to impose the zero curl constraint.

We will now use the Helmholz theorem [116] to uniquely decompose one instance of

this naïve estimator into a sum of a curl-free (conservative) ∇E and a divergence-free

(solenoidal) ∇×A vector fields:

f̂− =−∇E +∇×A. (3.10)

This allows a qualitative assessment of the prediction error introduced as a direct

result of violating the law of energy conservation. We perform the decomposition nu-

merically, by sampling the gradient estimate given by f̂− on a regular grid to project

it onto the closest conservative vector field ∇E by solving the Poisson equation with

Neumann boundary conditions

∆E = div f̂− with ∇E
⏐⏐
∂Ω = f̂−

⏐⏐
∂Ω, (3.11)

where ∂Ω is the domain boundary and ∆=∇2 denotes the Laplace operator. Fig-

ure 3.4 shows the residual curl component ∇×A, which exemplifies the systematic

error made by a non-conservative estimator.
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Figure 3.5 The blue line highlights the subset of parameter space for α2 and β1 that yields con-
servative vector field estimates from the model in Eq. 3.12. The curl of the predicted vector field
vanishes, i.e. ∇× f̂F = 0 only whenβ1 =α2. This is not the case for any of the off-diagonal parameter
configurations. In the shown example, the the configuration (1,−1) has a constant curl of (0,0,2)⊤

in the direction orthogonal to the α2-β1-plane.

Example

To illustrate another advantage of imposing the aforementioned integrability con-

straints, consider the following toy problem in just two dimensions: Given a set

of input data xi = [x1, x2]⊤i ∈ R2 we train a predictor f̂F that maps each input to a

corresponding gradient vector yi ∈R2 of some unknown function fE .

Instead of using a conservative model, we use a naïve approach where each compo-

nent of the gradient is learned independently. For the purpose of this example we

will limit ourselves to linear models and construct a predictor

f̂F(x) =
⎡⎣α1x1 +α2x2

β1x1 +β2x2

⎤⎦=
⎡⎣y1

y2

⎤⎦ . (3.12)

The weights αi and βi for i ∈ {1,2} are chosen independent of each other.

Since only integrable vector fields are sensible estimates for our problem, we inves-

tigate which parameter combinations of this unconstrained model represent valid

gradient fields. Integration of the first element with respect to the first free variable

x1 yields

f̂E = α1

2
x2

1 +α2x1x2 + c(x2) (3.13)

where c(x2) is the integration constant that depends on the remaining free variable.
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Example (cont.)

Differentiation with respect to x2 yields

(f̂F(x))1 =α2x1 + dc

dx2

!=β1x1 +β2x2 = (f̂F(x))2, (3.14)

hence α2
!=β1 in order for the model to be integrable. While the optimal parameters

for this model are determined in R4, only a much smaller subspace is spanned by

energy conserving solutions (see Figure 3.5).

We start by considering, that the force field estimator f̂F(x) and the PES estimator f̂E (x)

are related via some operator Ĝ . To impose energy conservation, we require that the curl

vanishes for every input to the transformed energy model1:

∇×Ĝ
[

f̂E
]= 0. (3.15)

As expected, this is satisfied by the derivative operator Ĝ =∇ or, in the case of energies

and forces, the negative gradient operator

f̂F(x) = Ĝ
[

f̂E
]

(x) =−∇ f̂E (x). (3.16)

As outlined previously, we can directly apply this transformation to a standard scalar-

valued ’energy’ GP with realizations fE :X 3N →R. Since differentiation is a linear operator,

the result is another GP with realizations fF :X 3N →R3N :

f̂F ∼GP
[
−∇µ(x),∇xk(x,x′)∇⊤

x′

]
. (3.17)

Note, that this gives the second derivative of the original kernel (with respect to each

of the two inputs) as the (co-)variance structure, with entries

ki j = ∂2k

∂xi∂x′
j

. (3.18)

It is equivalent (up to sign) to the Hessian ∇k∇⊤ = Hessx(k) (i.e. second derivative with

respect to one of the inputs), provided that the original covariance function k is stationary

(see Appendix A.1). A GP using this covariance enables inference based on the distribution

1For illustrative purposes, we use the definition of curl in three dimensions here, but the theory directly
generalizes to arbitrary dimension. One way to prove this is via path-independence of conservative vector
fields: the circulation of a gradient along any closed curve is zero and the curl is the limit of such circulations.
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of partial derivative observations, instead of function values [88, 89]. Effectively, this

allows training GP models in the gradient domain.

This Hessian kernel gives rise to the following force model as the posterior mean of

the corresponding GP:

f̂F(x) =
M∑
i

3N∑
j

(αi) j
∂

∂x j
∇k(x,xi ) (3.19)

Because the trained model is a (fixed) linear combination of kernel functions, integra-

tion only affects the kernel function itself. The corresponding expression for the energy

predictor

f̂E (x) =
M∑
i

3N∑
j

(αi) j
∂

∂x j
k(x,xi )+ c (3.20)

is therefore neither problem-specific, nor does it require retraining. It is however only

defined up to an integration constant

c = 1

M

M∑
i

Ei + f̂E (xi ), (3.21)

that we recover separately in the least-squares sense (see Appendix A.2.1). Here, Ei are the

energy labels for each training example.

Thanks to the fundamental physical connection between kF and kE , we can resort

to the extensive body of existing research on suitable kernels for the energy prediction

task [7, 9, 35] as starting point for the construction of a well-performing force field kernel.

3.2.3 Force field covariance function

We have discussed the theory behind conservative GPs and will now put it to practice.

Instead of employing the previously mentioned squared exponential kernel as the basis

for our force field kernel, we consider the more general Matérn family of covariance

functions [117–120]

k : Cv=n+ 1
2

(d) = B(d)Pn(d),

B(d) = exp

(
−
p

2vd

σ

)
,

Pn(d) =
n∑

k=0

(n +k)!

(2n)!

(
n

k

)(
2
p

2vd

σ

)n−k

,

(3.22)
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where d = ∥x−x′∥ is the Euclidean distance between two inputs and σ is the length scale

of the kernel. In particular, we are interested in the subfamily where the parameter v

is half-integer: v = n +1/2, because it allows a decomposition of this expression into a

product of an exponential term B(d) and a polynomial Pn(d) of order n.

These kernels are exactly n-times differentiable. The indefinitely differentiable squared

exponential kernel is recovered as a special case for n →∞ and the non-differentiable

exponential kernel with n = 0. Empirical evidence indicates that kernels with limited

smoothness yield better predictors [9], even if the prediction target is infinitely differen-

tiable. It is generally assumed, that overly smooth priors are detrimental to data efficiency,

as the associated hypothesis space is harder to constrain with a finite number of (poten-

tially noisy) training examples [82]. The differentiability of functions is directly linked to

the rate of decay of their spectral density at high frequencies, which has been shown to

play a critical role in spatial interpolation [118].

For n ≥ 3 it is hard to distinguish this class of Matérn kernels from the squared expo-

nential kernel [82] and hence its associated hypothesis space. Since the FF kernel can only

be constructed from base kernels that are at least twice differentiable, we use n = 2 and

obtain

kF(x,x′) =∇k(x,x′)∇⊤ =
[
∂

∂x′
1

∇k(x,x′), · · · ,
∂

∂x′
3N

∇k(x,x′)
]⊤

=
(
5
(
x−x′)(x−x′)⊤− 1σ(σ+p

5d)
) 5

3σ4
exp

(
−
p

5d

σ

) (3.23)

for the Matérn v = 5/2 covariance. The integral of this force field kernel (i.e. the gradient

of the original kernel) is:

kE (x,x′) = k(x,x′)∇⊤ = (
x−x′) (σ+d)

5

3σ3
exp

(
−
p

5d

σ

)
. (3.24)

A derivation for general integers n can be found in Appendix A.1.1.

Roto-translational invariance

Covariance functions remain valid under any transformation of their domain D :X →D,

i.e. k(D(x),D(x′)) = kD(x,x′) is again a kernel function. A rather trivial implication is that all

invariances of that input transformation are inherited, providing yet another opportunity

to characterize the properties of the predictor [92].

For example, the FF kernel in Eq. 3.23 is not invariant to relative roto-translations of

its inputs, which is however a basic symmetry of physical systems. We can easily add this

missing invariance by representing the molecular geometries in terms of relative distances
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between atoms, instead of Cartesian coordinates. Pairwise distance matrices with entries

(A)i j = ∥ri − r j∥ only remove the six superfluous degrees of freedom that describe the

global location and orientation of the molecular graph. Since global interactions between

multiple particles can be fully described in pairwise terms (as done in the Hamiltonian),

this representation does not take away from the expressiveness of the model.

The so-called Coulomb matrix representation [7] goes one step further and represents

each pair of nuclei in terms their Coulomb interaction instead of a simple distance. The

Coulomb energy is the only nuclei-nuclei interaction term in the Hamiltonian and empiri-

cally a good starting point for inference about molecular properties [9]. We use a slight

variation of this descriptor for our purpose, whereby atoms of different type interact on a

normalized scale,

Di j =
⎧⎨⎩∥ri − r j∥−1 for i > j

0 for i ≤ j
, (3.25)

foregoing the relative weighting with atomic numbers from the original formulation.

In combination with a descriptor, the FF kernel from Eq. 3.23 transforms to

kF = JD (∇kD∇⊤)J⊤D′ (3.26)

according to the derivative chain rule. We are therefore also interested in the Jacobian

of this descriptor JD = [vec(∇r1 D), . . . ,vec(∇rN D)]⊤, which is composed of the vectorized

derivatives with respect to each Cartesian coordinate in r:

JD = (∇ri D
)

i j / j i =
⎧⎨⎩(ri − r j )∥ri − r j∥−3 for i > j

0 for i ≤ j
. (3.27)

Periodic boundary conditions The Coulomb matrix can be easily extended to represent

unit cell boundary conditions, which allows a description of macro-scale systems like bulk

gases, liquids or crystal structures in addition to molecular structures. To achieve this,

we modify the underlying Euclidean distance metric such that it adheres to the so-called

minimum-image convention whereby each atom in the unit-cell only interacts with the

closest copy of each other atom. Effectively, the region of the unit cell is (topologically)

mapped onto a four-dimensional torus, making the boundaries disappear [121]. For an

orthogonal unit cell, the true distance between two particles ri and ri is then

δ̃e =
⎧⎨⎩δe −we , if δe > 1

2 we

δe +we , otherwise
(3.28)
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Figure 3.6 Predicted energies (a) and forces (b) for 500 consecutive time steps along a MD trajectory
of uracil at 500 K. The highly accurate GDML predictions (gray) follow the reference trajectory
(black, dashed) closely. To highlight small deviations, the area between both curves is marked red.

where δ= ri − r j and w is the width of the cell along all coordinate axes e ∈ {x, y, z}. This

periodic extension retains all of the properties of the CM, as it essentially only translates

the lattice vectors, such that none of the pairwise distances cross the unit cell walls.

With this new distance metric, the periodic system is fully described. We remark, that

there is no need to account for the interactions with virtual copies of the system within

the ML model, as their influence is already factored into the reference data.

3.3 Numerical experiments

We now proceed to evaluate the performance of the GDML approach by learning and then

predicting AIMD trajectories for molecules (see Figure 3.6), including benzene, uracil,

naphthalene, aspirin, salicylic acid, malonaldehyde, ethanol, and toluene (see Table B.3

for details on these molecular datasets). The GDML model for each dataset was trained
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on 1000 geometries with corresponding force labels, sampled uniformly according to the

MD@DFT trajectory energy distribution (see Table 3.1 and Figure 4.3).

In each numerical experiment, we measure the performance of the model using the

well-established mean absolute error (MAE) and root-mean-square error (RMSE) for

both, energy and force predictions (see Tables B.1 and 3.1 and Figure 4.3). Since forces

are multivariate, we analyze them under two additional aspects that permit a better

assessment of their topographical accuracy: The magnitude error

ϵmag = ∥(f̂F)i∥−∥Fi∥ (3.29)

describes the average extend to which the slope of the predicted PES differs from the

reference calculation, whereas the angular distance

ϵang = 1

π
cos−1

(
(f̂F)i ·Fi

∥(f̂F)i∥∥Fi∥

)
∈ [0,1] (3.30)

measures how accurate the direction of the predicted forces is. An angular distance of

zero indicates perfect alignment, while an error of one shows that the predicted force is

inverted. We compute the MAE and the RMSE using both measures.

3.3.1 Datasets

The datasets range in size from 150 k to nearly 1 M conformational geometries, sampled

from MD trajectories with a resolution of 0.5 fs, although only a very small subset is

necessary to train our model. We include molecules of different sizes with corresponding

PESs that exhibit different levels of complexity. The energy range across all data points

within a dataset spans from 20 to 48 kcal mol−1 and force components range from 266 to

570 kcal mol−1 Å−1 (see Table B.3). The total energy and force labels for each dataset were

computed using the PBE+vdW-TS electronic structure method [122, 123].

3.3.2 Baseline tests

Training exclusively on energies

To establish a baseline, we first contrast the GDML prediction results with the output of a

model that has been exclusively trained on energies (see Table B.1). For a fair comparison,

we construct the energy model using the same base kernel and descriptor, but perform

the hyperparameter search individually to ensure optimal model selection. Furthermore

we allow the energy model to use more data points than the GDML model: specifically we
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Figure 3.7 Efficiency of GDML predictor versus a model that has been trained on energies. (a)
Required number of samples for a force prediction performance of MAE (1 kcal mol−1 Å−1) with
the energy-based model (gray) and GDML (blue). The energy-based model was not able to achieve
the targeted performance with the maximum number of 63,000 samples for aspirin. (b) Force
prediction errors for the converged models (same number of partial derivative samples and energy
samples). (c) Energy prediction errors for the converged models. All reported prediction errors
have been estimated via cross-validation.

multiplied the training set size M by the number of atoms in one molecule times its three

spatial degrees of freedom 3N . This configuration yields equal kernel matrix sizes for both

models and therefore equal levels of complexity in terms of the optimization problem.

We compare both models on the basis of the required number of samples (Figure 3.7a)

to achieve a force prediction accuracy of 1 kcal mol−1 Å−1. Furthermore, the prediction

accuracy of the force and energy estimates for fully converged models (w.r.t. number of

samples) (Figure 3.7, b and c) are judged on the basis of the mean absolute error (MAE)

and root mean square error performance measures.

It can be seen in Figure 3.7a that the GDML model achieves a force accuracy of 1 kcal

mol−1 Å−1 using only 1000 samples for each PES reconstruction. Conversely, a pure energy-
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Table 3.1 GDML prediction accuracy for interatomic forces and total energies for all datasets.
Energy errors are in kcal mol−1, force errors in kcal mol−1 Å−1. Each model is trained on 1000
geometries with corresponding force labels.

Dataset

Energy error Force error

Magnitude Angle

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Benzene 0.07 0.09 0.23 0.34 0.21 0.30 0.0041 0.0079

Uracil 0.11 0.14 0.24 0.38 0.24 0.33 0.0040 0.0066

Naphthalene 0.12 0.15 0.23 0.34 0.21 0.28 0.0033 0.0115

Aspirin 0.27 0.36 0.99 1.41 0.91 1.19 0.0169 0.0244

Salicylic acid 0.12 0.15 0.28 0.43 0.32 0.43 0.0038 0.0065

Malonaldehyde 0.16 0.25 0.80 1.15 0.71 0.97 0.0109 0.0184

Ethanol 0.15 0.20 0.79 1.12 0.99 1.33 0.0130 0.0237

Toluene 0.12 0.16 0.43 0.62 0.35 0.45 0.0055 0.0088

based model would require up to two orders of magnitude more samples to achieve a

similar accuracy.

Training a non-conservative force model

The superior performance of the GDML model cannot be simply attributed to the greater

information content of force samples. To further demonstrate that it is indeed the con-

struction of the GDML model that leads to this positive result and not the force labels

alone, we perform another experiment using a naïve force model along the lines of the toy

example shown in Figure 3.4 (see Table 3.1 and Appendix B.0.2 for details on the prediction

accuracy of both models). The naïve force model is nonconservative but identical to the

GDML model in all other aspects. Note that its performance deteriorates significantly on

all data sets compared to the full GDML model.

It is noticeable that the GDML model at convergence (w.r.t. number of samples)

yields higher accuracy for forces than an equivalent energy-based model (see Figure 3.7b

and Appendix B.0.1). Here, we should remark that the energy-based model trained on

a very large data set can reduce the energy error to below 0.1 kcal mol−1, whereas the

GDML energy error remains at 0.2 kcal mol−1 for 1000 training samples (see Figure 3.7c).

However, these errors are already significantly below thermal fluctuations (kB T ) at room

temperature (∼0.6 kcal mol−1), indicating that the GDML model provides an excellent

description of both energies and forces, fully preserves their consistency, and reduces the
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Figure 3.8 Results of classical and PIMD simulations. The recently developed estimators based on
perturbation theory were used to evaluate structural and electronic observables [1]. (a) Compar-

ison of the interatomic distance distributions, h(r ) =
⟨

2
N (N−1)

∑N
i< j δ

(
r −∥ri − r j∥

)⟩
P,t

, obtained

from GDML (blue line) and DFT (dashed red line) with classical MD (main frame), and PIMD
(inset). a.u., arbitrary units. (b) Probability distribution of the dihedral angles (corresponding to
carboxylic acid and ester functional groups) using a 20 ps time interval from a total PIMD trajectory
of 200 ps.

complexity of the learning task. These are all desirable features of models that combine

rigorous physical laws with the power of data-driven machines.

3.3.3 Driving MD simulations with GDML

The ultimate test of any force field model is to establish its aptitude to predict statistical

averages and fluctuations using MD simulations. The quantitative performance of the

GDML model is demonstrated in Figure 3.8 for classical and quantum MD simulations of

aspirin at T = 300 K. Figure 3.8 a shows a comparison of interatomic distance distributions,

h(r ), from MD@DFT and MD@GDML. Overall, we observe a quantitative agreement in

h(r ) between DFT and GDML simulations. The small differences in the distance range

between 4.3 and 4.7 Å result from slightly higher energy barriers of the GDML model in the

pathway from A to B corresponding to the collective motions of the carboxylic acid and

ester groups in aspirin. These differences vanish once the quantum nature of the nuclei is

introduced in the PIMD simulations [124]. In addition, long-time scale simulations are

required to completely understand the dynamics of molecular systems. Figure 3.8B shows

the probability distribution of the fluctuations of dihedral angles of carboxylic acid and

ester groups in aspirin. This plot shows the existence of two main metastable configu-

rations A and B and a short-lived configuration C, illustrating the nontrivial dynamics

captured by the GDML model. Finally, we remark that a similarly good performance as for
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aspirin is also observed for the other seven molecules shown in Figure 3.7. The efficiency

of the GDML model (which is three orders of magnitude faster than DFT) should enable

long-time scale PIMD simulations to obtain converged thermodynamic properties of

intermediate-sized molecules with the accuracy and transferability of high-level ab initio

methods.

PIMD simulation details

Path-integral molecular dynamics (PIMD) is a method that incorporates quantum me-

chanical effects into MD simulations using Feynman’s path integral formalism (see Sec-

tion 1.1.4). Here, PIMD simulations were performed using P = 10 beads at ambient

temperature using the GDML model interface [125] to the i-PI code [124]. We used re-

cently developed estimators based on perturbation theory to evaluate structural and

electronic observables [1]. The total time of simulation was 200 ps for aspirin and 100

ps for the rest of the molecules. We used the NVT ensemble with a time step of 0.5 fs

throughout.

3.4 Practical considerations

3.4.1 Explicit treatment of N-body correlations

Long-range many-body interactions are a key ingredient in the accurate description of

physical systems, crucially determining their structure, stability, and response proper-

ties [126]. As already discussed in Section 1.1.2, the accuracy of electronic structure

methods is largely determined by the interaction order that is being considered. Even in

the atomistic approximation, omitting interactions can lead so serious deviations from

the true quantum-mechanical behavior. In fact, the Hellmann-Feynman theorem (see

Eq. 3.1) relates atomic forces to the expectation value of the (many-body) Hamiltonian

derivatives, showing that they do indeed interact globally.

Unsurprisingly, a genuine reconstruction of many-body phenomena thus requires

a global model that correlates all atoms. The GDML model satisfies this requirement,

because it couples all atoms through a matrix-valued force field covariance function

(Eq. 3.24). Each of its entries (kF)i j = ∂2k/∂xi∂x j defines a non-linear similarity between

two atoms in the molecule, which leads to global interactions in the corresponding GP

regression model. The posterior mean in Eq. 3.19 describes the force acting on atom i due
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to atom j under fixed configuration of all other atoms as

f̂Fij (x) =
M∑
i

(αi) j
∂2

∂xi∂x j
k(x,xi ). (3.31)

This formulation allows the GDML model to capture chemical, as well as long-range inter-

actions, as long as they are present in the reference data and fall within the error of the

model. While ML potentials are ubiquitous, a global treatment of interactions is unusual.

Many existing models [14–17, 19, 20, 22–29, 31, 32, 34, 35, 37–42, 45–47, 54, 59] impose

an explicit localization of individual atom contributions to the total energy, neglecting

the true many-body nature of quantum-mechanical systems in favor of computational

efficiency. Not least, because an explicit many-body treatment is expensive and only

feasible with highly data-efficient models. The total energy is expressed as a linear com-

bination of local environments characterized by a descriptor that acts as a non-unique

partitioning function to the total energy. Unfortunately, this approach runs the risk of

miss-representing the dynamical behavior of the molecule in simulation [127].

While limiting the scope of atomic interactions eventually becomes inevitable with

growing system size, it is crucial to introduce this approximation in a controlled way. Only

then will statistical models be truly transferable and behave predictably across a wide

range of systems. Unbiased models such as GDML are required as an underpinning, in

that scenario.

3.4.2 Numerical stability

A frequent problem with GPs are numerical instabilities due to ill-conditioned covariance

matrices caused by training points that are too close together. Since we draw observations

from inherently redundant MD trajectories, this is indeed a justified concern in our

application.

However, our empirical observations suggest that covariance matrices based on deriva-

tive covariance functions (such as kF) are generally better conditioned than those con-

structed from the unmodified covariance function k. This phenomenon is well-known

in literature [128] and attributed to the fact, that derivatives of (covariance) functions

are more complex and thus only weakly correlated for similar inputs, whereas there is

a stronger correlation before the derivative operator is applied (see Figure 3.9). In fact,

the improved conditioning of derivative covariances has previously been exploited to

create numerically robust GPs via substitution of nearby points with approximate lin-

earizations [129].
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Figure 3.9 The Pearson correlation coefficient ρk0,kd = cov(k0,kd )/(σk0σkd ) of a pair of covariance
functions in dependence of their spatial separation d . Here,σk0 andσkd are the standard deviations
of both covariance functions. We compare the Matérn covariances k0 = Cv=n+ 1

2
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2

(∥x −d∥) for n = 2 (red) and its second derivatives, as used in the GDML approach (blue).
The correlation for small distances drops off quickly using the gradient domain covariance function,
which improves the numerical stability of the GP.

However, we also remark that particular caution is required, when using a descriptor

D :X →D in combination with derivative covariance functions. In that setting we have

kF = JD Hess(kD)J⊤D′ (3.32)

for the covariance function after application of the derivative chain rule. Here, kD(x,x′) =
k(D(x),D(x′)) and JD is the Jacobian of the descriptor (see Eq. 3.27). Note, that Hess(kD) is

a Gram matrix and JD is a projection JD : D→X from descriptor to input space. Even if

Hess(kD) is well-conditioned, the projection can be rank reducing, e.g. if dim(D) < dim(X )

or when JD is rank-deficient in the first place.

Here, we use a descriptor based on pairwise distance matrices that maps from dim(D) =
N (N −1)/2 to input space of dim(X ) = 3N (see Section 3.2.3). For N < 7 atoms, JD elevates

the dimensionality of the covariance matrix and thus inevitably reduces the rank. Even for

N ≥ 7, the projection JD yields a rank-deficient covariance matrix, since D removes the 6

roto-translational degrees of freedom, which leads to ambiguities in the derivative with

respect to Cartesian coordinates, hence

rank[JD] = rank[JD Hess(kD)J⊤D′] = 3N −6 < dim(X ). (3.33)
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As a result, the FF kernel function in Eq. 3.26 requires regularization to yield a well-posed

optimization problem.

3.5 Software implementation

We provide a Python software implementation of all models developed in this thesis,

including GDML. User-friendly routines enable the reconstruction and evaluation of force

fields from custom reference geometries with corresponding forces and energies. Forces

and energies for new geometries can then be queried in fractions of a millisecond on a

regular laptop computer (see Table C.1).

3.5.1 Program overview

Our main goal with this reference implementation is to provide a compact working ex-

ample of the model in an accessible programming language. We offer one variant of

our program with sophisticated parallel processing support for ubiquitous multi-core

CPUs and another one for state-of-the-art multi-GPU computing environments. While

adhering to best-practices for writing readable code, our main focus is on performance.

Hence, we make full use of programming language specific optimizations, e.g. vectorized

operations as a replacement for slow nested loops. These allow us to achieve performance

comparable to natively compiled code.

The tasks of FF reconstruction and evaluation are separated into independent mod-

ules for training (train) and prediction (predict). All necessary routines for reference

data sampling, symmetry recovery, model parametrization are packaged in the training

module. It generates lightweight model files that contain the preprocessed essentials for

FF evaluation, which are then independently instantiated and queried using the second

module. This separation makes it possible to centralize training on a high performance

computer while the completed model can be efficiently used anywhere. For that purpose,

we designed the prediction module to be minimal and self-contained in the sense that

it only contains logic that is absolutely essential for generating energy and forces for a

given input geometry. This structure greatly simplifies the integration of GDML into any

application that requires a FF. On top of that, we include a command-line interface (CLI)

sgdml that exposes the functionality of both modules to the shell. It provides an easy

introduction to GDML model reconstruction, guiding the the user through the complete

process.
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Appendix C describes how to use our software and how to interface with the FF simula-

tion engines ASE [130] and i-PI [131] to run various atomistic simulations, such as classical

and path integral molecular dynamics, vibrational analysis, structure optimization and

the computation of transition paths.

Source code

Software, documentation, datasets and pre-trained models are available at

www.sgdml.org. The GDML model developed in this chapter is accessible via the

flag use_sym=False using the Python API or --gdml through the CLI.

3.6 Summary

In this chapter we have developed the GDML approach, which enables accurate recon-

structions of complex multidimensional PES using explicitly energy-conserving GPs. Our

model allows AIMD simulations to be carried out at greatly accelerated speed, with the

accuracy of high-level quantum chemistry calculations.

Achieving this goal required generalizing the GP formalism to support simultaneous

mappings to multiple outputs with predefined correlation structure. It enabled us to

define a covariance function that gives rise to a Hilbert space of vector-valued functions

that obey the law of energy conservation. Any vector field prediction made by the GP is

therefore guaranteed to be a valid force field with an associated PES. Not only does this

approach simplify the learning problem, it also reduces the reference data acquisition

cost via analytical gradient sampling by virtue of the Hellman-Feynman theorem.

Empirical analyses revealed the advantages of learning in the gradient domain, as

opposed to PES reconstructions from energy labels alone. We have discussed why GDML

meets the demands placed on force fields in practical MD simulations particularly well.

Furthermore, we investigated the numerical stability of our method. The performance

of our model was demonstrated for AIMD trajectories of intermediate-sized molecules,

including naphthalene benzene, toluene, naphthalene, ethanol, uracil, and aspirin. GDML

is able to reproduce global PESs for these molecules with an accuracy of 0.3 kcal mol−1 for

energies and 1 kcal mol−1Å−1 for atomic forces using only 1000 conformational geometries

for training.

In the next chapter we will develop our model further and incorporate additional

physical priors. Energy conservation is a symmetry that is implied by homogeneity of
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time. Additionally, molecules possess well-defined rigid space group symmetries, as well

as dynamic nonrigid symmetries that can be exploited to construct even more efficient

models.





Chapter 4

Point groups and fluxional symmetries

Partial results of the presented work have been published in:

• Chmiela, S., Sauceda, H. E., Müller, K.-R., Tkatchenko, A. (2018) "Towards

Exact Molecular Dynamics Simulations with Machine-Learned Force Fields".

In: Nature Communications, 9(1), 3887.

One can classify physical symmetries of molecular systems into symmetries of space

and time and specific static and dynamic symmetries of a given molecule (see Figure 4.1).

Global spatial symmetries include rotational and translational invariance of the energy,

while homogeneity of time implies energy conservation. These global symmetries were al-

ready successfully incorporated into the GDML model introduced in the previous chapter.

Additionally, molecules possess well-defined rigid space group symmetries (i.e. reflec-

tion operation), as well as dynamic nonrigid symmetries (i.e., methyl group rotations). For

example, the benzene molecule with only six carbon and six hydrogen atoms can already

be indexed in 6!6! = 518400 different, but physically equivalent ways. However, not all

of these symmetric variants are accessible without crossing impassable energy barriers.

Only the 24 symmetry elements in the D6h point group of this molecule are relevant.

While methods for identifying molecular point groups for polyatomic rigid molecules are

readily available [132], Longuet-Higgins [5] has pointed out that non-rigid molecules have

extra symmetries. These dynamical symmetries arise upon functional group rotations or

torsional displacements and they are usually not incorporated in traditional force fields

and electronic structure calculations. Typically, extracting nonrigid symmetries requires

chemical and physical intuition about the system at hand. In this chapter we develop a

physically motivated algorithm for data driven discovery of all relevant molecular symme-

tries from MD trajectories. This will allow us to impose the same symmetries onto the FF
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Figure 4.1 Fully data-driven symmetry discovery. (A, B) Our multipartite matching algorithm
recovers a globally consistent atom-atom assignment across the whole training set of molecular
conformations, which directly enables the identification and reconstructive exploitation of relevant
spatial and temporal physical symmetries of the molecular dynamics. (C) The global solution
is obtained via synchronization of approximate pairwise matchings based on the assignment of
adjacency matrix eigenvectors, which correspond in near isomorphic molecular graphs. We take
advantage of the fact that the minimal spanning set of best bipartite assignments fully describes
the multipartite matching, which is recovered via its transitive closure. Symmetries that are not
relevant within the scope of the training dataset are successfully ignored. (D) This enables the
efficient construction of individual kernel functions for each training molecule, reflecting the
joined similarity of all its symmetric variants with another molecule. The kernel exercises the
symmetries by consolidating all training examples in an arbitrary reference configuration from
which they are distributed across all symmetric subdomains. This approach effectively trains the
fully symmetrized dataset without incurring the additional computational cost.
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covariance function to constrain the hypothesis space of the GP and finally improve the

data-efficiency of the model to allow training from coupled cluster reference data.

4.1 Positive-semidefinite assignment

MD trajectories consist of smooth consecutive changes in nearly isomorphic molecular

graphs. When sampling from these trajectories the combinatorial challenge is to correctly

identify the same atoms across the examples such that the learning method can use

consistent information for comparing two molecular conformations in its kernel function.

While so-called bi-partite matching allows to locally assign atoms R = {r1, . . . ,rN } for each

pair of molecules in the training set, this strategy alone is not sufficient as the assignment

needs to be made globally consistent by multipartite matching in a second step [133–

135]. The reason is that optimal bi-partite assignment yields indefinite functions in

general, which are problematic in combination with kernel methods [136]. They give

rise to indefinite kernel functions, which do not define a Hilbert space. Practically, there

will not exist a metric space embedding of the complete set of approximate pairwise

similarities defined in the kernel matrix and the learning problem becomes ill-posed. A

multipartite correction is therefore necessary to recover a non-contradictory notion of

similarity across the whole training set. A side benefit of such a global matching approach

is that it can robustly establish correspondence between distant transformations of a

geometry using intermediate pairwise matchings, even if the direct bi-partite assignment

is not unambiguously possible.

4.1.1 Solving the multi-way matching problem

We start by defining the bi-partite matching problem in terms of adjacency matrices

as representation for the molecular graph. To solve the pairwise matching problem we

therefore seek to find the assignment τ which minimizes the squared Euclidean distance

between the adjacency matrices A of two isomorphic graphs G and H with entries (A)i j =
∥ri − r j∥, where P(τ) is the permutation matrix that realizes the assignment:

argmin
τ

L(τ) = ∥P(τ)AG P(τ)⊤−AH∥2. (4.1)

Notably, most existing ML potentials use representations based on adjacency matrices as

input [7–10, 12–54, 57–59]. An optimal assignment in terms of Eq. 4.1 therefore transfers

to almost any other model and the GDML model in particular.
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Figure 4.2 T-SNE [2] embedding of all molecular geometries in an ethanol training set. Each data
point is color coded to show the permutation transformations that align it with the arbitrarily
chosen canonical reference state (gray points). These permutations are recovered by restricting
the rank of the pairwise assignment matrix P̃ to obtain a consistent multi-partite matching P .

Adjacency matrices of isomorphic graphs have identical eigenvalues and eigenvectors,

only their assignment differs. Following the approach of Umeyama [137], we identify the

correspondence of eigenvectors U by projecting both sets UG and UH onto each other to

find the best overlap. We use the overlap matrix,

M = abs(UG )abs(UH )⊤ (4.2)

after sorting eigenvalues and overcoming sign ambiguity. Then −M is provided as the cost

matrix for the Hungarian algorithm [138], maximizing the overall overlap which finally

returns the approximate assignment τ̃ that minimizes Eq. 4.1 and thus provides the results

of step one of the procedure (see Appendix A.2.2). As indicated, global inconsistencies

may arise, observable as violations of the transitivity property τ j k ◦τi j = τi k of the assign-

ments [133]. Therefore a second step is necessary which is based on the composite matrix

P̃ of all pairwise assignment matrices P̃i j ≡ P(τ̃i j ) within the training set.

We propose to reconstruct a rank-limited P via the transitive closure of the minimum

spanning tree (MST) that minimizes the bi-partite matching cost (see Eq. 4.1, Figure 4.1)

over the training set. The MST is constructed from the most confident bi-partite assign-

ments and represents the rank N skeleton of P̃ , defining also P (see Figure 4.2). Finally,
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Table 4.1 Recovering the permutation-inversion (PI) group of symmetry operations of fluxional
molecules from short MD trajectories. We used our multi-partite matching algorithm to recover
the symmetries of the molecules used in Longuet-Higgins [5]. Our algorithm identifies PI group
symmetries (a superset that also includes the PG), as well as additional symmetries that are an
artifact of the metric used to compare molecular graphs in our matching algorithm. Each dataset
consists of a MD trajectory of 5000 time steps.

Molecule PG order PI group order Recovered

Hydrazine 2 8 8

Ammonia 6 6 6

(Difluoromethyl)borane 2 12 12

Cyclohexane 6 12 12

Trimethylborane 2 324 339

Dimethylacetylene 6 36 39

Ethane 6 16 36

the resulting multi-partite matching P is a consistent set of atom assignments across the

whole training set.

As a first test, we apply our algorithm to a diverse set of non-rigid molecules that have

been selected by Longuet-Higgins [5] to illustrate the concept of dynamic symmetries.

Each of the chosen examples changes easily from one conformation to another due to

internal rotations that can not be described by point groups. Those molecules require the

more complete permutation-inversion group of symmetry operations that include ener-

getically feasible permutations of identical nuclei. Our multi-partite matching algorithm

successfully recovers those symmetries from short MD trajectories (set Table 4.1), giving

us the confidence to proceed.

4.1.2 Symmetric kernels

The resulting consistent multi-partite matching P enables us to construct symmetric

kernel-based ML models of the form

f̂ (x) =
M∑
i j
αi j k(x,Pi j xi ), (4.3)

by augmenting the training set with the symmetric variations of each molecule [139]. A

particular advantage of our solution is that it can fully populate all recovered permuta-



58 Point groups and fluxional symmetries

tional configurations even if they do not form a symmetric group, severely reducing the

computational effort in evaluating the model. Even if we limit the range of j to include all

S unique assignments only, the major downside of this approach is that a multiplication

of the training set size leads to a drastic increase in the complexity of the cubically scaling

GP regression algorithm. We overcome this drawback by exploiting the fact that the set of

coefficients α for the symmetrized training set exhibits the same symmetries as the data,

hence the linear system can be contracted to its original size, while still defining the full

set of coefficients exactly.

Without affecting the pairwise similarities expressed by the kernel, we transform all

training geometries into a canonical permutation xi ≡ Pi 1xi , enabling the use of uniform

symmetry transformations P j ≡ P1 j . Simplifying Eq. 4.3 accordingly, gives rise to the

symmetric kernel that we originally set off to construct

f̂ (x) =
M∑
i
αi

S∑
q

k(x,Pq xi )

=
M∑
i
αi ksym(x,xi ),

(4.4)

and yields a model with the exact same number of parameters as the original, non-

symmetric one. This ansatz is known as invariant integration and frequently applied in ML

potentials [140, 29, 22]. However, our solution, motivated by the concept of permutation-

inversion groups [5], is able to truncate the sum over potentially hundreds of thousands

permutations in the full symmetric group of the molecule to a few physically reasonable

ones. We remark that this step is essential in making invariant integration practical

beyond systems with five or six identical atoms (with 5! = 120 and 6! = 720 permutations,

respectively). The largest permutation sets recovered from the datasets considered here

have cardinality 12, whereas the associated symmetric groups have orders 6!6!, 7!8! and

12!10!2!, for benzene, toluene and azobenzene respectively (see Table 4.2). Our multi-

partite matching algorithm is therefore able to shorten the sum over S in Eq. 4.4 by up to

15 orders of magnitude, without significant loss of accuracy.

4.2 Symmetric gradient domain learning (sGDML)

Our symmetric kernel is an extension to regular kernels and can be applied universally,

in particular to kernel based force fields. Here, we construct a symmetric variant of the

gradient domain learning (GDML) model, sGDML. This symmetrized GDML force field
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Table 4.2 Relative increase in accuracy of the sGDML@DFT vs. the non-symmetric GDML model:
the benefit of a symmetric model is directly linked to the number of permutational symmetries in
the system. All symmetry counts include the identity transformation.

Molecule # Sym. in ksym
∆MAE [%]

Energy Forces

Benzene 12 -1.6 -62.3

Uracil 1 0.0 0.0

Naphthalene 4 0.0 -52.2

Aspirin 6 -29.6 -31.3

Salicylic acid 1 0.0 0.0

Malonaldehyde 4 -37.5 -48.8

Ethanol 6 -53.4 -58.2

Toluene 12 -16.7 -67.4

Paracetamol 12 -40.7 -52.9

Azobenzene 8 -74.3 -47.4

kernel takes the form:

Hess(ksym)(x,x′) =
S∑
q

Hess(k)(x,Pq x′)Pq . (4.5)

Accordingly, the trained force field estimator collects the contributions of the 3N partial

derivatives of all training points M and number of symmetry transformations S to compile

the prediction. It takes the form

f̂F(x) =
M∑
i

3N∑
l

S∑
q

(Pqαi )l
∂

∂xl
∇k(x,Pq xi ) (4.6)

and a corresponding energy predictor is obtained by integrating f̂F with respect to the

Cartesian geometry as in Eq. 3.20. Due to linearity of integration, the expression for the

energy predictor is again identical up to second derivative operator on the kernel function.

4.2.1 Training

To construct the covariance matrix for training the sGDML model, the following formula-

tion is used:

Hess(ksym)(x,x′) = 1

S

S∑
pq

P⊤
p Hess(k)(Pp x,Pq x′)Pq . (4.7)
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Unlike in Eq. 4.5, both inputs to the kernel function are symmetrized here (using P⊤
p and

Pq ) to obtain a matrix K = K ⊤. A permutation of the first argument of the kernel function

furthermore requires an additional normalization factor.

4.2.2 Descriptors

For notational convenience, we have described the formulation of the sGDML model

for generic inputs x up until now. When the input to the force field kernel function is a

descriptor, the symmetric (training) kernel matrix evaluates to

Hess(ksym)(D(x),D(x′)) =
1

S

S∑
pq

(JD(Pp x)Pp )⊤Hess(k)(D(Pp x),D(Pq x′))JD(Pq x)Pq

(4.8)

after application of the chain rule, where JD is the Jacobian of the descriptor (see Sec-

tion 3.2.3).

4.3 Numerical experiments

Every (s)GDML model is trained on a set of reference examples that reflects the population

of energy states a particular molecule visits during an MD simulation at a certain temper-

ature. For our purposes, the corresponding set of geometries is subsampled from a 200 pi-

cosecond DFT MD trajectory at 500 K following the Boltzmann distribution. Subsequently,

a globally consistent permutation graph is constructed that jointly assigns all geometries

in the training set, providing a small selection of physically feasible transformations that

define the training set specific symmetric kernel function. In the interest of computational

tractability, we shortcut this sampling process to construct sGDML@CCSD(T) and only

recompute energy and force labels at this higher level of theory (see Figure 4.4).

The sGDML model can be trained in closed form, which is both quicker and more

accurate than numerical solutions. Model selection is performed through a grid search on

a suitable subset of the hyper-parameter space. Throughout, cross-validation with dedi-

cated datasets for training, testing and validation are used to estimate the generalization

performance of the model.
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Figure 4.3 Data efficiency gains using sGDML versus GDML. Energy and force prediction accuracy
(in terms of the mean absolute error (MAE)) as a function of training set size of both models trained
on DFT forces: the gain in efficiency and accuracy is directly linked to the number of symmetries
in the system.

4.3.1 Datasets

The data used for training the DFT models were created running ab initio MD in the NVT

ensemble using the Nosé-Hoover thermostat at 500 K. The simulation duration was 200

ps, sampled at a resolution of 0.5 fs. We computed forces and energies using all-electrons

at the generalized gradient approximation (GGA) level of theory with the Perdew-Burke-

Ernzerhof (PBE) [122] exchange-correlation functional, treating van der Waals interactions

with the Tkatchenko-Scheffler (TS) method [123]. All calculations were performed with

FHI-aims [141]. The final training data was generated by subsampling the full trajectory

under preservation of the Maxwell-Boltzmann distribution for the energies.

To create the coupled cluster datasets, we reused the same geometries as for the

DFT models and recomputed energies and forces using all-electron coupled cluster with
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single, double, and perturbative triple excitations (CCSD(T)). The Dunning’s correlation-

consistent basis set cc-pVTZ was used for ethanol, cc-pVDZ for toluene and malon-

aldehyde and CCSD/cc-pVDZ for aspirin. All calculations were performed with the

Psi4 [142, 143] software suite.

4.3.2 Forces and energies from GDML to sGDML@DFT

to sGDML@CCSD(T)

Table 4.3 Prediction accuracy for interatomic forces and total energies of the sGDML@DFT on all
datasets. Energy errors are in kcal mol−1, force errors in kcal mol−1Å−1. Each model is trained on
1000 geometries with corresponding force labels.

Dataset

Energy error Force error

Magnitude Angle

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Benzene 0.10 0.12 0.06 0.09 0.06 0.09 0.0009 0.0017

Uracil 0.11 0.14 0.24 0.37 0.22 0.31 0.0039 0.0064

Naphthalene 0.12 0.15 0.11 0.17 0.11 0.15 0.0016 0.0026

Aspirin 0.19 0.25 0.68 0.96 0.52 0.68 0.0094 0.0139

Salicylic acid 0.12 0.15 0.28 0.44 0.32 0.45 0.0038 0.0064

Malonaldehyde 0.10 0.13 0.41 0.62 0.39 0.56 0.0055 0.0087

Ethanol 0.07 0.09 0.33 0.49 0.46 0.63 0.0051 0.0083

Toluene 0.10 0.12 0.14 0.21 0.14 0.19 0.0020 0.0031

Paracetamol 0.15 0.20 0.49 0.70 0.60 0.84 0.0073 0.0118

Azobenzene 0.09 0.13 0.41 0.61 0.49 0.71 0.0059 0.0105

Our goal is to demonstrate that it is possible to construct compact sGDML models

that faithfully recover CCSD(T) force fields for flexible molecules with up to 20 atoms,

by using only a small set of few hundred molecular conformations. As a first step, we

investigate the gain in efficiency and accuracy of sGDML model vs. GDML model em-

ploying MD trajectories of ten molecules from benzene to azobenzene computed with

DFT (see Figure 4.3 and Table 4.3). Unsurprisingly, the benefit of a symmetric model is

directly linked to the number of symmetries in the system. For toluene, naphthalene, as-

pirin, malonaldehyde, ethanol, paracetamol and azobenzene, sGDML improves the force

prediction by 31.3% to 67.4% using the same training set in all cases (see Table 4.2). As

expected, uracil and salicylic acid have no exploitable symmetries, hence the performance

of sGDML is unchanged with respect to GDML. The inclusion of symmetries leads to a
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Figure 4.4 Reference data generation: Geometries are sampled from a sufficiently long, but cheap
DFT-PBE+TS MD trajectory to ensure optimal coverage of the configuration space. Energy and
force labels for this small subset of the trajectory are then recomputed at the higher CCSD(T)
level of theory and used for training the sGDML model. The full PES will be reconstructed at the
accuracy of the CCSD(T) reference data.

stronger improvement in force prediction performance compared to energy predictions.

This is most clearly visible for the naphthalene dataset, where the force predictions even

improve unilaterally. We attribute this to the difference in complexity of both quantities

and the fact that an energy penalty is intentionally omitted in the cost function to avoid a

tradeoff.

A minimal force accuracy required for reliable MD simulations is MAE = 1 kcal mol−1Å−1.

While the GDML model can achieve this accuracy at around 800 training examples for all

molecules except aspirin, sGDML only needs 200 training examples to reach the same

quality. Note that energy-based ML approaches typically require two to three orders of

magnitude more data [144].

Given that the novel sGDML model is data efficient and highly accurate, we are now

in position to tackle CCSD(T) level of accuracy with modest computational resources.

We have trained sGDML models on CCSD(T) forces for benzene, toluene, ethanol, and

malonaldehyde. For the larger aspirin molecule, we used CCSD forces (see Table 4.4). The

sGDML@CCSD(T) model achieves a high accuracy for energies, reducing the prediction

error of sGDML@DFT by a factor of 1.4 (for ethanol) to 3.4 (for toluene). This finding

leads to an interesting hypothesis that sophisticated quantum-mechanical force fields

are smoother and, as a convenient side effect, easier to learn. Note that the accuracy of
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Table 4.4 Prediction accuracy for interatomic forces and total energies of the sGDML@CCSD(T)
model on all datasets. Energy errors are in kcal mol−1, force errors in kcal mol−1Å−1.

Dataset

Energy error Force error

Magnitude Angle

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Benzene 0.004 0.005 0.04 0.06 0.04 0.06 0.0008 0.0013

Aspirin* 0.16 0.21 0.76 1.07 0.56 0.74 0.0091 0.0123

Malonaldehyde 0.06 0.08 0.37 0.56 0.34 0.46 0.0052 0.0082

Ethanol 0.05 0.07 0.35 0.51 0.47 0.65 0.0056 0.0104

Toluene 0.03 0.04 0.21 0.30 0.19 0.24 0.0028 0.0042

* CCSD

the force prediction in both sGDML@CCSD(T) and sGDML@DFT is comparable, with the

benzene molecule as the only exception. We attribute this aspect to slight shifts in the

locations of the minima on the PES between DFT and CCSD(T), which means that the

data sampling process for CCSD(T) can be further improved.

4.3.3 Molecular dynamics with ab initio accuracy

The predictive power of a force field can only be truly assessed by computing dynamical

and thermodynamical observables, which require sufficient sampling of the configuration

space, for example by employing molecular dynamics or Monte Carlo simulations. We

remark that global error measures, such as mean average error (MAE) and root mean

squared error (RMSE) are typically prone to overestimate the reconstruction quality of

the force field, as they average out local topographical properties. However, these local

properties can become highly relevant when the model is used for an actual analysis of MD

trajectories. As a demonstration, we will use the ethanol molecule; this molecule has three

minima, gauche± (Mg±) and trans (Mt) shown in Figure 4.5-A, where experimentally it has

been confirmed that Mt is the ground state and Mg is a local minimum [145]. The energy

difference between these two minima is only 0.12 kcal mol−1 and they are separated by an

energy barrier of 1.15 kcal mol−1. Obviously, the widely discussed ML target accuracy of 1

kcal mol−1 is not sufficient to describe the dynamics of ethanol and other molecules.

This brings us to another crucial issue for predictive models: the reference data ac-

curacy. Computing the energy difference between Mt and Mg using DFT(PBE-TS) we

observe that Mg is 0.08 kcal mol−1 more stable than Mt, contradicting the experimental

measurements. Repeating the same calculation using CCSD(T)/cc-pVTZ we find that Mt
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Figure 4.5 Molecular dynamics simulations for ethanol. (A) Potential energy profile of the dihe-
dral angle describing the rotation of the hydroxyl group for CCSD(T) (red) vs. DFT (blue). The
energetic barriers predicted by sGDML@CCSD(T) are: Mt → Mg: 1.18 kcal mol−1, Mg- → Mg+: 1.19
kcal mol−1, and Mg → Mt: 1.07 kcal mol−1. The dashed lines show the probability distributions
obtained from PIMD at 300K. (B) Joint probability distribution function for the two dihedral angles
of the methyl and hydroxyl functional groups. Each minimum is annotated with the occupation
probability obtained from classical and path-integral MD in comparison with experimental values.
(C) Analysis of vibrational spectra (velocity–velocity autocorrelation function). (top) Comparison
between the vibrational spectrum obtained from PIMD simulations at 300K for sGDML@CCSD(T)
and its sGDML@DFT counterpart; (middle) comparison between the sGDML@CCSD(T) PIMD
spectrum and the harmonic approximation based on CCSD(T) frequencies; (bottom) compar-
ison of sGDML@CCSD(T) PIMD spectra at 300K and 100K. The rightmost panel shows several
characteristic normal modes of ethanol, where atomic displacements are illustrated by green
arrows.

is more stable than Mg by 0.08 kcal mol−1, in excellent agreement with experiment. From

this analysis and subsequent MD simulations we conclude that CCSD(T) or sometimes

even higher accuracy is necessary for truly predictive insights.
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Additionally to requiring highly accurate quantum chemical approximations, the

ethanol molecule also belongs to a category of fluxional molecules sensitive to nuclear

quantum effects (NQE). This is because internal rotational barriers of the ethanol molecule

(Mg ↔ Mt) are on the order of ∼1.2 kcal mol−1 (see Figure 4.5), which is neither low enough

to generate frequent transitions nor high enough to avoid them. In a classical MD at room

temperature the thermal fluctuations lead to inadequate sampling of the PES. By correctly

including NQE via path-integral molecular dynamics (PIMD), the ethanol molecule is

able to transition between Mg and Mt configurations, radically increasing the transition

frequency (see Figure B.1) and generating statistical weights in excellent agreement with

experiment. Figure 4.5-B shows the statistical occupations of the different minima for

ethanol using classical MD and PIMD for the sGDML@CCSD(T) and sGDML@DFT models

in comparison with the experimental results. Overall, our MD results for ethanol highlight

the necessity of using a highly accurate force field with an equally accurate treatment of

NQE for achieving reliable and quantitative understanding of molecular systems.

4.3.4 CCSD(T)-level vibrational spectra

Having established the accuracy of statistical occupations of different states of ethanol,

we are now in position to discuss for the first time the CCSD(T) vibrational spectrum of

ethanol computed using the velocity–velocity autocorrelation function based on centroid

PIMD (see Figure 4.5-C). As a reference, in Figure 4.5-C-top we compare the vibrational

spectra from DFT and CCSD(T) sGDML models in the fingerprint zone, and as expected

the sGDML@CCSD(T) model generates higher frequencies but both share similar shapes

but slightly different peak intensities. Molecular vibrational spectra at finite temperature

include anharmonic effects, hence anharmonicities can be studied by comparing the

sGDML@CCSD(T) spectrum with the harmonic approximation. Figure 4.5-C-middle

shows such comparison and demonstrates that low-frequency and non-symmetric vi-

brations are most affected by finite-temperature contributions. The thermal frequency

shift can be better seen in Figure 4.5-C-bottom, where the sGDML@CCSD(T) spectrum is

compared at two different temperatures. We observe that each normal mode is shifted

in a specific manner and not by a simple scaling factor, as typically assumed. The most

striking finding from our simulations is the resolution of the apparent mismatch between

theory and experiment explaining the origin of the torsional frequency for the hydroxyl

group. Experimentally, the low frequency region of ethanol, around ∼210 cm−1, is not

fully understood, but there are frequency measurements for the hydroxyl rotor ranging in

between ∼202 [146, 147] and ∼207 [148] cm−1 for gas-phase ethanol, while theoretically

we found 243.7 cm−1 at the sGDML@CCSD(T) level of theory in the harmonic approxima-
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tion. From the middle and bottom panels in Figure 4.5-C, we observe that by increasing

the temperature the lowest peak shifts to substantially lower frequencies compared to the

rest of the spectrum. The origin of such phenomena is the strong anharmonic behavior of

the lowest normal mode a, shown in Figure 4.5-C-middle, which mainly corresponds to

hydroxyl group rotations. At room temperature the frequency of this mode drops to ∼215

cm−1, corresponding to a red-shift of 12% and getting closer to the experimental results

demonstrating the importance of dynamical anharmonicities.

4.3.5 Probability distributions CCSD(T) vs. DFT

Finally, we illustrate the wider applicability of the sGDML model to more complex molecules

than ethanol by performing a detailed analysis of MD simulations for malonaldehyde and

aspirin. In Figure 4.6-A, we show the joint probability distributions of the dihedral angles

(PDDA) for the malonaldehyde molecule. This molecule has a peculiar PES with two

local minima with a O· · ·H· · ·O symmetric interaction (structure (1)), and a shallow region

where the molecule fluctuates between two symmetric global minima (structure (2)). The

dynamical behavior represented in structure (2) is due to the interplay of two molecular

states dominated by an intramolecular O· · ·H interaction and a low crossing barrier of

∼0.2 kcal mol−1. An interesting result is the nearly unvisited structure (1) by sGDML@DFT

in comparison to sGDML@CCSD(T) model regardless of the great similarities of their PES,

which gives an idea of the observable consequences of subtle energy differences in the

PES of molecules with several degrees of freedom. In terms of spectroscopic differences,

the two approximations generate spectra with very few differences (Figure 4.6-A-right),

but being the most prominent the one between the two peaks around 500 cm−1. Such

difference can be traced back to the enhanced sampling of the structure (1), and addition-

ally it could be associated to the different nature between the methods in describing the

intramolecular O· · ·H coupling.

For aspirin, the consequences of proper inclusion of the electron correlation are even

more significant. Figure 4.6-B shows the PIMD generated PDDA for DFT and CCSD based

models. By comparing the two distributions we find that sGDML@CCSD generates lo-

calized dynamics in the global energy minimum, whereas the DFT model yields a rather

delocalized sampling of the PES. These two contrasting results are explained by the differ-

ence in the energetic barriers along the ester dihedral angle. The incorporation of electron

correlation in CCSD increases the internal barriers by ∼1 kcal mol−1. This prediction

was corroborated with explicit CCSD(T) calculations along the dihedral-angle coordinate

(black dashed line in Figure 4.6-B-PES). Furthermore, the difference in the sampling is also

due to the fact that the DFT model generates consistently softer interatomic interactions
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Figure 4.6 Analysis of MD simulations with sGDML for malonaldehyde and aspirin. The MD simu-
lations at 300 K were carried out for 500 ps. (A) Joint probability distributions of the dihedral angles
in malonaldehyde, describing the rotation of both aldehyde groups based on classical MD simula-
tions for sGDML@CCSD(T) and sGDML@DFT. The configurations (1) and (2) are representative
structures of the most sampled regions of the PES. (B) Joint probability distributions of the dihedral
angles in aspirin, describing the rotation of the ester and carboxylic acid groups based on PIMD
simulations for sGDML@CCSD and sGDML@DFT using 16 beads at 300 K. The potential energy
profile for the ester angle in kcal mol−1 is shown for sGDML@CCSD (red), sGDML@DFT (blue) and
compared with the CCSD reference (black, dashed). Contour lines show the differences of both
distributions on a log scale. Both panels also show a comparison of the vibrational spectra gen-
erated via the velocity-velocity autocorrelation function obtained with sGDML@CCSD(T)/CCSD
(red) and sGDML@DFT (blue).

compared to CCSD, which leads to large and visible differences in the vibrational spectra

between DFT and CCSD (Figure 4.6-B-right).

4.3.6 Symmetry compression

By construction, the symmetric model in Eq. 4.6 is invariant to all permutational transfor-

mations of the molecular geometry that are represented in the training set. Swapping two

symmetric atoms in the input yields the exact same atomic force predictions as before.

This rises the question, whether we can remove the redundant degrees of freedom from

the model in order to simplify it? Formally, the idea is to replace the symmetric predictor
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f̂ :X N →RN with a smaller model f̂↓N :XO →RO , where O < N . The output for any sym-

metric degree of freedom can then be obtained by repeatedly evaluating the compressed

model for the omitted dimensions. Let f̂ be symmetric in its first two arguments such that

f̂(x1,x2, · · · ,xN ) = f̂(x2,x1, · · · ,xN ), (4.9)

then the reduced model with O = N −1 interacting atoms takes the form

f̂↓N(x1,x3, · · · ,xN ) = f̂↓N(x2,x3, · · · ,xN ), (4.10)

from which we recover the full prediction as

f̂(x1,x2, · · · ,xN ) = [(f̂↓N(x1,x3, · · · ,xN ))1, f̂↓N(x2,x3, · · · ,xN )]⊤. (4.11)

Of course, this principle trivially generalizes to permutation groups of arbitrary order. In

the sGDML model, a dimensionality reduction in input space directly translates to a reduc-

tion of the kernel matrix size from 3N M to 3OM , making this idea especially compelling as

it drastically reduces training time. Redundant arguments are identified by examining the

set of associated index assignments {τ(i )s}i∈N ,s∈S . Here, τ(i ) is the permutation in tuple

notation that returns the new index for atom i , and S denotes the recovered permutation

set. Arguments with identical index assignments are interchangeable.

To construct the compressed sGDML model f̂↓N, we simply remove the rows and

column in the force field kernel function that correspond with the those input dimensions.

This can be accomplished elegantly, by only removing the respective rows in the descriptor

Jacobian JD ∈ R3N×dim(I) for the training data. By leaving the descriptor Jacobian of the

input untouched during inference, the model will still return forces and energy for the full

degrees of freedom of the molecule.

Numerical results

The usefulness of the symmetry compression approach hinges on how adversely it affects

prediction accuracy. Given a fixed set of training points, we do expect a degradation

due to the reduced complexity of the model, which we will investigate in the first part of

this analysis. The more interesting question is, whether we can gain accuracy by using

symmetry compression to keep the complexity of the training task (e.g. the size of the

kernel matrix) constant, while increasing the number of training points. One important

thing to keep in mind during this analysis is that the compression ratio (i.e. the number

of removed atoms) is different for each dataset. Highly symmetric molecules can be
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Table 4.5 Prediction accuracy for interatomic forces and total energies using the original sGDML
model and a compressed variant sGDML↓N that only considers the non-symmetric atomic degrees
of freedom ↓ N . Both model types have been trained on 1000 data points. The best result for each
dataset is highlighted by bold face.

Dataset N ↓N

Energy error [kcal mol−1] Force error [kcal mol−1Å−1]

sGDML sGDML↓N sGDML sGDML↓N

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Benzene 12 2 0.10 0.12 0.10 0.12 0.06 0.09 0.11 0.17

Uracil 12 − 0.11 0.14 − − 0.24 0.37 − −
Naphthalene 18 5 0.12 0.15 0.12 0.15 0.11 0.17 0.21 0.31

Aspirin 21 19 0.19 0.25 0.21 0.27 0.68 0.96 0.70 1.00

Salicylic acid 16 − 0.12 0.15 − − 0.28 0.44 − −
Malonaldeh. 9 5 0.10 0.13 0.12 0.16 0.41 0.62 0.50 0.74

Ethanol 9 6 0.07 0.09 0.08 0.10 0.33 0.49 0.37 0.54

Toluene 15 9 0.10 0.12 0.10 0.12 0.14 0.21 0.17 0.25

Paracetamol 20 14 0.15 0.20 0.17 0.22 0.49 0.70 0.59 0.83

Azobenzene 24 8 0.09 0.13 0.21 0.27 0.41 0.61 0.69 0.98

summarized with only a few degrees of freedom, whereas non-symmetric ones like uracil

and salicylic acid are not compressible at all.

First, we investigate the degradation of accuracy as a result of symmetry compression.

For this test, we keep the training set size fixed at 1000 examples like in our previous

experiments and compare force and energy prediction performance of the compressed

model sGDML↓N to the unmodified sGDML model. Table 4.5 shows the results for each

of the ten DFT datasets. We observe, that the energy prediction performance is largely

unaffected by symmetry compression (maximum MAE degradation: 0.02 kcal mol−1),

except for azobenzene (MAE degradation: 0.12 kcal mol−1). The three best converged

models according to the learning curves in Figure 4.3, (namely benzene, naphthalene and

toluene) even show unchanged energy prediction accuracy, despite a drastic reduction

in kernel matrix size. The biggest compression ratio is possible for the highly symmetric

benzene molecule, where the effective degrees of freedom reduce to one sixth, from

12 atoms to only 2. Remarkably, the energy prediction accuracy of sGDML↓N does not

degrade at all. The second best compression ratio (18 : 5) is possible for naphthalene,

also without negatively affecting energy prediction accuracy. The effect of symmetry

compression is more pronounced in the force predictions. Here we observe a significant

difference between absolute and relative degradation of the prediction accuracy between
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the datasets. Unsurprisingly, the level of absolute degradation mostly aligns with how

well each model is converged. Once again, benzene, naphthalene and toluene show the

mildest absolute degradation of the force MAE (0.06, 0.1, 0.08 kcal mol−1Å−1, respectively),

whereas azobenzene degrades the most, by 0.29 kcal mol−1Å−1. An analysis of the relative

degradation however shows that benzene and naphthalene experienced the strongest

increase in force prediction error, by 183% and 191%, respectively. We observe the smallest

relative degradation for aspirin, ethanol and paracetamol, however these molecules are

also the ones with the lowest compression (ratios 21 : 19, 9 : 6 and 20 : 14, respectively).

Overall, benzene, naphthalene and azobenzene show the best ratio of compression to

error increase. Here, the accuracy penalty due to symmetry compression is particularly

low, compared to the reduction in kernel matrix size.

The fact that energy prediction performance is essentially unaffected by a reduction

in model complexity, further reinforces our assumption that achieving a good prediction

performance for the energy is significantly easier than predicting accurate forces. These

results are consistent with our findings in the previous chapter, where we discovered that

very accurate energy predictions are obtainable even with a basic model (see Appendix B.1).

At the same time, a low energy error does not necessarily indicate a faithful reconstruction

of the PES: despite similar energy prediction accuracies, the compressed model makes

worse force predictions in comparison to the original sGDML model.

We will now increase the number of training points for each sGDML↓N model until it

reaches the same kernel size as the uncompressed model. For highly symmetric molecules

like benzene, naphthalene and azobenzene this results in a drastic increase in training

set size, from the initial 1000 points to 6000, 3600 and 3000, respectively. We observe

an improvement of the energy and force prediction performance for all datasets, except

azobenzene, which only improves in force accuracy (see Table 4.6). Once again, there is

barely any change in the energy prediction performances, as those are already converged

for the smaller training set sizes. The improvements in force prediction accuracy are

moderate, but indicative of a positive trend. Malonaldehyde and ethanol benefit the

most with absolute force improvements by 0.04 and 0.03 kcal mol−1Å−1, respectively. In

general, the least converged models with highest force prediction error in the original

model benefit the most from symmetry compression and training data backfill.

In summary, the explicit knowledge of symmetries can not only be exploited for data

efficiency, but also to reduce the number of parameters and thus the complexity of the

model. Our analysis shows that reducing the complexity of the sGDML learning problem

via symmetry compression yields better performing models compared to simply reducing

the number of training points to achieve the same effect.
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Table 4.6 Prediction accuracy for interatomic forces and total energies using the original sGDML
model with a training set size of M = 1000 and the compressed variant sGDML↓N with increased
training set size M̃ to match the complexity of the optimization problem during training. The best
result for each dataset is highlighted by bold face.

Dataset M̃

Energy error [kcal mol−1] Force error [kcal mol−1Å−1]

sGDML sGDML↓N sGDML sGDML↓N

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Benzene 6000 0.10 0.12 0.10 0.12 0.06 0.09 0.06 0.09

Uracil − 0.11 0.14 − − 0.24 0.37 − −
Naphthalene 3600 0.12 0.15 0.12 0.15 0.11 0.17 0.11 0.17

Aspirin 1105 0.19 0.25 0.19 0.25 0.68 0.96 0.66 0.93

Salicylic acid − 0.12 0.15 − − 0.28 0.44 − −
Malonaldehyde 1800 0.10 0.13 0.10 0.13 0.41 0.62 0.37 0.56

Ethanol 1500 0.07 0.09 0.07 0.09 0.33 0.49 0.30 0.44

Toluene 1667 0.10 0.12 0.10 0.12 0.14 0.21 0.14 0.20

Paracetamol 1429 0.15 0.20 0.15 0.20 0.49 0.70 0.47 0.66

Azobenzene 3000 0.09 0.13 0.18 0.23 0.41 0.61 0.41 0.61

4.4 Discussion

The present work enables molecular dynamics simulations of flexible molecules with up

to a few dozen atoms with the accuracy of high-level ab initio quantum mechanics. Such

simulations pave the way to computations of dynamical and thermodynamical properties

of molecules with an essentially exact description of the underlying potential-energy

surface. On the one hand, this is a required step towards molecular simulations with

spectroscopic accuracy. On the other, our accurate and efficient sGDML model leads

to unprecedented insights when interpreting the experimental vibrational spectra and

dynamical behavior of molecules. The contrasting demands of accuracy and efficiency

are satisfied by the sGDML model through a rigorous incorporation of physical symme-

tries (spatial, temporal, and local symmetries) into a gradient-domain machine learning

approach. This is a significant improvement over symmetry adaption in traditional force

fields and electronic-structure calculations, where usually only (global) point groups are

considered. Global symmetries are increasingly less likely to occur with growing molecule

size, providing diminishing returns. Local symmetries on the other hand are system

size independent and preserved even when the molecule is fragmented for large-scale

modeling.
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A Ethanol Probability Distribution of Dihedral Angles

sGDML@CCSD(T) Amber

B Malonaldehyde Probability Distribution of Dihedral Angles

AmbersGDML@CCSD(T)

C Aspirin Probability Distribution of Dihedral Angles

sGDML@CCSD Amber

Figure 4.7 Accuracy of the sGDML model in comparison to a traditional force field. We contrast
the dihedral angle probability distributions of ethanol, malonaldehyde and aspirin obtained from
classical MD simulations at 300 K with sGDML (left column) versus the AMBER [3, 4] (right column)
force field. The ethanol simulations were carried out at constant energy (NVE), whereas a constant
temperature (NVT) was used for malonaldehyde and aspirin. (A) Ethanol: the coupling between
the hydroxyl and methyl rotor is absent in AMBER. Moreover, the probability distribution shows
an unphysical harmonic sampling at room temperature, revealing the oversimplified harmonic
description of bonded interactions in that force field. (B, C) Malonaldehyde and aspirin: the
formulation of the AMBER force field is dominated by Coulomb interactions, which can lead an
incomplete description of the PES and even spurious global minima in the case of aspirin. The
length of the simulations was 0.5 ns.
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In many of the applications of machine learned force fields the target error is the chem-

ical accuracy or thermochemical accuracy (1 kcal mol−1), but this value was conceived

in the sense of thermochemical experimental measurements, such as heats of formation

or ionization potentials. Consequently, the accuracy in ML models for predicting the

molecular PES should not be tied to this value. Here, we propose a framework for the

accuracy in force fields which satisfy the stringent demands of molecular spectroscopists,

being typically in the range of wavenumbers ( ≈ 0.03 kcal mol−1). Reaching this accuracy

will be one of the greatest challenges of ML-based force fields. We remark that energy

differences between molecular conformers are often on the order of 0.1–0.2 kcal mol−1,

hence reaching spectroscopic accuracy in molecular simulations is needed to generate

predictive results.

A comparable accuracy is not obtainable with traditional force fields (see Figure 4.7).

In general, they miss most of the crucial quantum effects due to their rigid, handcrafted

analytical form. For example, the absence of a term for electron lone pairs in AMBER leads

to uncoupled rotors in ethanol. Furthermore the oversimplified harmonic description of

bonded interactions generates an unphysical harmonic sampling at room temperature

(see Figure 4.7-A). In the case of malonaldehyde (Figure 4.7-B), both distributions mislead-

ingly resemble each other, however they emerge from different types of interactions. For

AMBER, the dynamics are purely driven by Coulomb interactions, while the sampling with

sGDML@CCSD(T) (structure (2) in Figure 4.6-A) is mostly guided by electron correlation

effects. Lastly, a complete mismatch between the regular force field and sGDML is evi-

dent for aspirin (see Figure 4.7-C), where the interactions dominated by Coulomb forces

generate a completely different PES with spurious global and local minima. It is worth

mentioning, that the observed shortcomings of the AMBER force field can be addressed

for a particular molecule, however only at the cost of losing generality and computational

efficiency.

In the context of machine learning, our work connects to recent studies on the usage

of invariance constraints for learning and representations in vision. In the human visual

system and also in computer vision algorithms the incorporation of invariances such as

translation, scaling and rotation of objects can in principle permit higher performance

at more data efficiency [149]; learning theoretical bounds can furthermore show that

the amount of data required is reduced by a factor: the number of parameters of the

invariance transformation [150]. Interestingly, our study goes empirically beyond this

factor, i.e. our gain in data efficiency is often more than two orders of magnitude when

combining the invariances (physical symmetries). We speculate that our finding may
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indicate that the learning problem itself may become less complex, i.e. that the underlying

problem structure becomes significantly easier to represent.

4.5 Practical considerations

4.5.1 Hybrid loss functions

Table 4.7 Prediction accuracy for interatomic forces and total energies using the original sGDML
model and a variant sGDML+E that has been extended with additional energy constraints in the
loss function. Both model types have been trained on 1000 data points. The sGDML+E model
consistently overfits the energy constraints at the cost of force prediction accuracy. The best result
for each dataset is highlighted by bold face.

Dataset

Energy error [kcal mol−1] Force error [kcal mol−1Å−1]

sGDML sGDML+E sGDML sGDML+E

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Benzene 0.10 0.12 0.01 0.02 0.06 0.09 0.29 0.39

Uracil 0.11 0.14 0.04 0.06 0.24 0.37 0.43 0.61

Naphthalene 0.12 0.15 0.03 0.04 0.11 0.17 0.30 0.40

Aspirin 0.19 0.25 0.18 0.25 0.68 0.96 0.86 1.19

Salicylic acid 0.12 0.15 0.06 0.08 0.28 0.44 0.44 0.63

Malonaldehyde 0.10 0.13 0.07 0.11 0.41 0.62 0.61 0.84

Ethanol 0.07 0.09 0.06 0.09 0.33 0.49 0.44 0.62

Toluene 0.10 0.12 0.03 0.04 0.14 0.21 0.32 0.41

Paracetamol 0.15 0.20 0.13 0.18 0.49 0.70 0.67 0.93

Azobenzene 0.09 0.13 0.11 0.15 0.41 0.61 0.58 0.81

The development of GDML has been guided by the objective to reproduce the dy-

namical behavior of molecules in MD simulations as well as possible. In MD, the PES is

explored via integration of Newton’s second law of motion, which exclusively involves

atomic forces. This dependency is reproduced in the loss function of GDML, which only

penalizes force prediction errors without imposing any explicit energy constraints on the

integral of the model. Due to that, force prediction performance takes priority over energy

predictions during training, giving rise to the name gradient domain machine learning.

However, since energy labels are usually available as a byproduct of force calculations,

it can be tempting to include both label types in the loss function of the ML model, in the

hope that they will help improve the overall prediction performance for both quantities.
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A hybrid-loss function that penalizes force and energy prediction error simultaneously

takes the form:

L+E (Ω) =
M∑
i

⎡⎣ η

1−η

⎤⎦⊙
⎛⎝⎡⎣ JΦi

Φi
⊤

⎤⎦ω−
⎡⎣ Fi

−E

⎤⎦⎞⎠2

=
M∑
i

⎡⎣ f̂F −Fi√
η̃( f̂E −Ei )

⎤⎦2

=
M∑
i

(f̂F −Fi )2 + η̃( f̂E −Ei )2,

(4.12)

where ⊙ is an element-wise multiplication operator. Sometimes, a linear trade-off hyper-

parameter η̃ = (1−η)/η and η ∈ [0,1] is introduced to account for the relative differ-

ences in units, information content and noise level of both label types [29, 39, 40]. How-

ever, a bilateral reduction of both loss terms is only possible, if both objectives are non-

competing [151]. The implication is that the optimal parameter set would be effective

across both tasks, which nullifies the benefits of a combined loss in the first place.

A linear combination of energy and force loss assumes that there exists a conversion

factor, i.e. that both error types are proportional to each other. However, rearranging

Eq. 4.12 yields the following contradiction for L+E (Ω) ̸= 0:

M∑
i

(f̂F −Fi )2 =
M∑
i
η̃( f̂E −Ei )2

→
M∑
i

(−∇( f̂E −Ei ))2 =
M∑
i

(
√
η̃( f̂E −Ei ))2  

(4.13)

While the derivative is a linear operator, it obviously does not map to a multiple of the

original function in general. This is only the case for its eigenfunction1, the exponential.

Clearly, it is therefore not justified to join both quantities in one loss function linearly,

because they will cause the predictor to either overfit on the energies or the forces. Recent

literature [39, 40] gives empirical evidence of such behavior. To investigate the effect of a

combined loss function on the sGDML model, we have extended our original formulation

with energy constraints by constructing the following modified kernel:

ksGDML+E =
⎡⎣Hess(k) ∇k

(∇k)⊤ k

⎤⎦ . (4.14)

We remark, that this formulation follows directly from Eq. 4.12. Here, k is the energy

kernel, which is coupled the original force field kernel by its first derivative ∇k. Table 4.7

1The exponential function f (x) = c exp(λx) for arbitrary constants c, is the solution to the differential
equation ∂ f (x)/∂x =λ f (x) with eigenvalue λ.
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shows the prediction accuracy for both quantities using the original sGDML formulation

and the extended sGDML+E variant.

We observe, that the sGDML+E model overfits its energy constraints on all datasets, at

the cost of a significant degradation in force prediction accuracy. The force prediction error

for benzene grew the most (by a factor of 4.8), whereas aspirin shows the mildest decline

(factor 1.3). We remark, that the degradation strongly correlates with the performance of

the unmodified sGDML model: the smaller the original prediction error on a dataset, the

bigger the degradation in accuracy after the inclusion of energy constraints. Overall, these

empirical results support our initial theoretical considerations.

For MD simulations, a model with optimal force prediction performance is desirable,

in order to represent the dynamical behavior of the molecule correctly. An improved

energy prediction accuracy is meaningless, if the associated MD trajectory is inaccurate

due to unreliable force predictions. It may be enticing to use two separate models for

predicting energies and forces, each optimized for its respective task [39, 40]. However, this

introduces inconstancies between energy and force prediction along an MD trajectory,

which would lead to a miss-representation of the thermodynamical properties of the

system. We are thus convinced that gradient domain learning approaches this problem

from the right direction.

4.5.2 Imposing permutational symmetry

Same-species atoms within a molecule are indistinguishable from one another and can

be exchanged while leaving its energy and forces invariant. ML models that share the

same symmetry can be more data efficient, which motivated many developments in that

direction early on [152, 153, 27, 154].

Invariant integration

Typically, permutational invariance is implemented via invariant integration, either over

the permutational symmetry group of the molecule [29, 17, 22], or over the 3D rotation

group of a continuous basis expansion of the nuclei positions [29, 31, 14]. Both approaches

require integration over a large domain during inference, which incurs considerable

computational cost. While certain basis expansions allow analytical integration, the

choice is limited [29]. Alternatively, a smaller isotropic basis can be used to alleviate

some of the computational burden [38–40]. Another popular approach is to fragment the

molecular structure into smaller parts to reduce the cardinality of the symmetric group of
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the system. However, such a localized model will not be able to faithfully reconstruct the

global nature of quantum mechanics.

In sGDML, we pursue a different approach in which we limit the invariant integra-

tion to the physical point group and fluxional symmetries that are actually relevant [5].

Relevant symmetries are those that are accessible without crossing impassable energy

barriers. They can be automatically recovered from the training set and integrated into

the force field kernel [155], which yields an invariant model with the exact same number

of parameters as the original, non-symmetric one. Invariant integration over the set of

meaningful symmetries is inexpensive: with 12 physically relevant symmetries, benzene,

toluene and azobenzene are the most symmetric molecules considered here, whereas

their full symmetric groups have orders 6!6!, 7!8! and 12!10!2!, respectively. Despite this

reduction in complexity, the sGDML model is indistinguishable from a fully symmetrized

model, in terms of its prediction performance.

Optimal assignment

An alternative to invariant integration is the optimal assignment approach [156], where

each model input undergoes a transformation to a canonical permutational configuration

before inference. Of course, the prediction then needs to be transformed back accordingly

to produce the expected output. Such a model effectively performs a local reconstruction

of the symmetric part of the target function which is then effectively ’tiled’ across the entire

input domain. This involves compressing the data xi to one of its symmetric subdomains

via transformation to a fixed reference configuration Pi 1xi prior to training. Such an

approach bears two major disadvantages over our proposition:

• Every query molecule must be first matched to the training set, making evaluations

of the model computationally costly.

• The "tiling" process causes discontinuous seams to form along borders of neighbor-

ing symmetric subdomains, were different copies of the local model meet. These

seams correspond with the symmetry lines of the molecule, which are frequently

crossed during MD simulations. Moreover, they reside in the extrapolation regime

of the local model, where the prediction performance is notoriously bad.

Our approach resolves these issues by effectively reconstructing all symmetric subdomains

simultaneously. It retains all advantages of the assignment kernel.
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Absolute eigenvalues [Å]

Figure 4.8 Eigenspectra of the adjacency matrices of two highly symmetric molecules: benzene
with symmetries in two dimensions (left) and the C20 fullerene with symmetries in three dimen-
sions (right). Benzene has 12 point group symmetries and eight out of its 12 eigenvalues are
degenerate (shown in red). C20 has 120 symmetries, with 15 degenerate eigenvalues out of 20. An
unambiguous assignment of eigenvectors between several near-isomorphic instances of these
structures (close to equilibrium) is therefore impossible. Our proposed multi-partite matching
algorithm resolves the inconsistencies across multiple bi-partite assignments in the training set
that arise from this ambiguity and other factors.

4.5.3 Degenerate eigenvalues and the bi-partite matching algorithm

The approximate bi-partite matching algorithm underlying our multi-partite extension

assumes that the adjacency matrices of molecular graphs have non-degenerate eigenval-

ues (i.e. with multiplicity one). Under the additional premise that all molecular graphs

in the training set are near-isomorphic, it then establishes a one-to-one correspondence

between the eigenvectors to solve the matching problem [137]. However, certain graph

topologies have degenerate eigenvalues and thus rotational freedom in the eigenvector

basis. In those cases, the bi-matching problem is ill-posed, since an unambiguous assign-

ment of eigenvectors is no longer possible. A high likelihood of inconsistent bi-partite

matchings across the training set is the result. The purpose of our proposed subsequent

multi-partite matching step is to resolve those inconsistencies.

Degenerate eigenvalues are especially prevalent in highly symmetric graphs. While

molecular graphs generated in MD simulations are rarely in perfect equilibrium, their

eigenvectors remain similar and therefore hard to distinguish form each other. We illus-

trate that by means of two molecules with full rotational symmetry: benzene and the C20

fullerene. The eigenspectra of both structures in equilibrium are highly degenerate, yet

our algorithm recovers the full point groups D6h (12 symmetries) and Ih (120 symmetries),

respectively (see Figure 4.8). This illustrates that the proposed multi-partite matching

behaves robustly, even when the set of initial pairwise assignments is of poor quality.
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4.6 Software implementation

The sGDML model developed in this chapter is also available in our software package that

was introduced in section 3.5.

Source code

Software, documentation, datasets and pre-trained models are available at:

www.sgdml.org

4.7 Summary

We have extended the GDML model developed in the previous chapter to additionally

incorporate all relevant rigid space group symmetries as well as dynamic non-rigid symme-

tries. Typically, the identification of symmetries requires chemical and physical intuition

about the system at hand, which is impractical in a ML setting. Through a data-driven

multi-partite matching approach, we automate the discovery of permutation matrices

of molecular graph pairs in different permutational configurations and thus between

symmetric transformations undergone within the scope of a dataset. This allows us to

define a compact symmetric model that can be parametrized from very small training

datasets, enabling the direct construction of flexible molecular force fields from expensive

high-level ab initio calculations.

The developed sGDML model calculates energies and forces at speeds around four

and eight orders of magnitude faster than DFT and CCSD(T), respectively. Compared

to conventional FFs, sGDML is however only around one to three orders of magnitude

slower. This brings it is closer to polarizable force fields [157] than classical force fields

like AMBER [3, 4], CHARMM [158, 159], or GROMACS [160] in terms of speed.

This reconciliation of accuracy and speed allows our approach to faithfully reproduce

global force fields at quantum-chemical CCSD(T) level of accuracy, while enabling con-

verged molecular dynamics simulations with fully quantized electrons and nuclei. Such

simulations are key for the accurate prediction of molecular behavior at realistic condi-

tions, but unfeasible within brute-force ab initio approaches since they would require

millions of CPU years.

In various numerical experiments, we have demonstrated that our sGDML model

genuinely captures essential features of molecular PESs, like local energy minima and

energy barriers. In fact, it is accurate enough to allow a detailed study of highly resolved
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topographical differences of PESs at different levels of electronic structure theory. Fur-

thermore, we have presented MD simulations for flexible molecules that provide insights

into their the dynamical behavior. For small molecules like benzene and toluene, our

model can even reach spectroscopic accuracy in the energy, with an accuracy of a few

wavenumbers for the position of the spectral peaks. These results show that we achieved

our goal of constructing an efficient empirical model that is able to yield highly predictive

results.





Chapter 5

Conclusion

In this thesis, we have addressed the accuracy and computational efficiency dilemma that

arises in the description of PESs. The computational cost of accurate ab initio calculations

prohibits large numbers of (energy and force) evaluations, whereas efficient mechanistic

approximations are unable to integrate important insights from quantum mechanics.

Meaningful conclusions about the dynamical and thermodynamical properties of a system

are however only possible with a sufficient sampling of the configuration space, which

frequently entails millions of PES evaluations. In practice, this rules out the use of ab initio

methods, to the detriment of the predictive power of these simulations. This problem

is only aggravated by systems sensitive to NQEs, which require an even more expensive

PIMD sampling.

As an alternative, we have proposed a combined quantum mechanics and ML ap-

proach that is able to reconcile both contradicting aspects of accuracy and computational

efficiency. We have approached this challenge with techniques from probabilistic in-

ference, using universal approximators that have the flexibility to model any atomic

interaction. Typically, the parametrization of such general models relies on the avail-

ability of large reference datasets to obtain an accurate results, which would prevent the

construction of ML models using high-level ab initio methods. We have overcome this

restrictive requirement by informing the model with fundamental physical invariances

and conservation laws. Not only does this approach make the models more data-efficient,

it also guarantees that the incorporated physics are represented without artifacts.

We have developed models that include the full set of temporal and spatial symmetries

of molecules. Homogeneity of time implies energy conservation and global spatial symme-

tries include rotational and translational invariance of the energy. Using a generalization

of GPs to vector-valued Hilbert spaces, we have defined a predictor that explicitly maps

to energy conserving solutions and thus allows the simultaneous prediction of accurate
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inter-atomic forces and corresponding potential energy of molecules. Our approach

emerges from the insight that FFs should be reconstructed in the gradient domain and we

have shown theoretically and empirically that this approach indeed leads to an optimal

prediction of forces.

For small molecules with a few dozen atoms, the initially developed energy-conserving

model can be parametrized from a few thousand data points. In an effort to further in-

crease the training data efficiency of the model, we have proceeded to incorporate spatial

geometries, creating sGDML. While point group symmetries are routinely exploited in

computational chemistry, we have developed a fully automated algorithm which addition-

ally extracts all fluxional symmetries that are present in the training dataset. This required

us to solve the multi-partite assignment problem using permutation synchronization. The

resulting sGDML model is data efficient and accurate enough to allow the use of coupled

cluster calculations as a reference.

In a series of numerical experiments, we have finally highlighted the necessity of

using such accurate descriptions of forces with an equally accurate treatment of NQEs

for achieving reliable and quantitative understanding of molecular systems. For the first

time, we were able to compute the CCSD(T) vibrational spectrum of ethanol using the

velocity-velocity autocorrelation function based on centroid PIMD. We have concluded by

demonstrating the wider applicability of the sGDML by performing a detailed analysis of

MD simulations of more complex molecules like malonaldehyde and aspirin. Again, we

found significant consequences of a proper inclusion of the electron correlation effects,

enabled by our model.

5.1 Outlook

There is a number of challenges that remain to be solved to extend the sGDML model

in terms of its applicability and scaling to larger molecular systems. Given an extensive

set of individually trained sGDML models, an unseen molecule can be represented as a

non-linear combination of those models. This would allow scaling up and transferable

prediction for molecules that are similar in size. For example, the well-separated inter-

and intramolecular correlation scales within molecular solids suggest that a hierarchical

decomposition is possible with limited degradation of prediction accuracy.

The high efficiency of GPs is due to the fact that they operate in a predefined high-

dimensional feature space in which the learning task is less complex. This space is

implicitly characterized by the covariance function, which was chosen based on physical

intuition and previous empirical results in this work. A systematic construction of this
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space would however offer many advantages, including the opportunity to transfer learned

concepts in-between systems in a principled way. The theoretical foundations that would

enable this effort already exists in the form of so-called random features [95].

Advanced sampling strategies could be employed to combine forces from different

levels of theory to minimize the need for computationally-intensive ab initio calcula-

tions. Our focus in this work was on intramolecular forces in small- and medium-sized

molecules. Looking ahead, it is sensible to integrate the sGDML model with an accurate

intermolecular force field to enable predictive simulations of condensed molecular sys-

tems (Ref. [51] presents an intermolecular model which would be particularly suited for

coupling with sGDML). Many other avenues for further development exist [161], includ-

ing incorporating additional physical priors, reducing dimensionality of complex PESs,

computing reaction pathways, and modeling infrared, Raman, and other spectroscopic

measurements.
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Appendix A

Derivations

A.1 Derivative observations

Because differentiation is a linear operation, the derivative of a GP yields another GP, which

allows inference based on derivative observations [89, 82]. The associated covariance

function between partial derivatives is then

cov

(
∂ f

∂x
,
∂ f ′

∂x′

)
= ∂2 cov

(
f , f ′)

∂x∂x′ = ∂2k
(
x,x′)

∂x∂x′ . (A.1)

For data points in 3N dimensions, this function is matrix-valued, describing the covari-

ances between all pairs of 3N partial derivatives.

It is equivalent (up to sign) to the Hessian of the original scalar-valued kernel function

with respect to either one of both inputs, if k is stationary, i.e. k(x,x′) = k̃(x−x′). With

δ= x−x′, we can thus alternatively write

∂2k̃

∂x∂x′ =
∂2k̃

∂δ2

∂δ

∂x

∂δ

∂x′ =−∂
2k̃

∂δ2

(
∂δ

∂x

)2

= ∂2k̃

∂2x
. (A.2)

A.1.1 Matérn covariance derivatives

We use the Hessian of the (isotropic) kernel function from the parametric Matérn family,

k : Cv=n+ 1
2

(d) = B(d)Pn(d),

B(d) = exp

(
−
p

2vd

σ

)
,

Pn(d) =
n∑

k=0

(n +k)!

(2n)!

(
n

k

)(
2
p

2vd

σ

)n−k

(A.3)
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to obtain the force field kernel as it is used in GDML and sGDML. In this formulation,

d = ∥x−x′∥ is the Euclidean distance between two inputs andσ is the length scale. It can be

regarded as a generalization of the universal Gaussian kernel with variable differentiability

n. In our application, we use n = 2 which yields a kernel function that is similar to the

Laplacian kernel, but twice differentiable. Nevertheless, we derive the Hessian in full

generality here. For notational convenience we write this kernel function as a product of

an exponential term B(d) and a polynomial Pn(d) of order n. Then the partial derivatives

in the gradient take the form

∂κ

∂xi
= B

∂Pn

∂xi
+ ∂B

∂xi
Pn . (A.4)

They are composed of the first derivatives of the polynomial

∂Pn

∂xi
=

n∑
k=0

(n +k)!

(2n)!

(
n

k

)
(n −k)(xi −x ′

i )

d 2

(
2
p

2pvd

σ

)n−k

(A.5)

and the first derivative of the exponential function

∂B

∂xi
=−

p
2v(xi −x ′

i )

σd
exp

(
−
p

2vd

σ

)
. (A.6)

Analogously, the entries in the corresponding Hessian evaluate to

∂2κ

∂xi∂x j
= B

∂2Pn

∂xi∂x j
+ ∂B

∂xi

∂Pn

∂x j
+ ∂B

∂x j

∂Pn

∂xi
+ ∂2B

∂xi∂x j
Pn (A.7)

using the second derivative of the polynomial

[
∂2Pn

∂xi∂x j

]
i ̸= j

=
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and the second derivative of the exponential

[
∂2B

∂xi∂x j

]
i ̸= j

=
p

2v(xi −x ′
i )(x j −x ′

j )(
p

2vd +σ)

σ2d 3
exp

(
−
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2vd

σ
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=
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∂2B

∂xi∂x j

]
i ̸= j

+
p

2v

σd
exp

(
−
p

2vd

σ

)
.

(A.9)

The matrix-valued force field kernel function Hess(κ) is then assembled according to

Eq. A.7.

A.2 GDML model derivation

When training a GDML model [144], the following quadratic objective function over M

training points is minimized:

L(Ω) =
M∑
i

(JΦiωi −Fi )2 +λ∥Ω∥2 (A.10)

Here, JΦi = JΦ(xi ) are the 3N × F Jacobi matrices of a non-linear feature transform of

the training geometries xi into F -dimensional space, weighted by parameter vectors

ωi . Fi contains the atomic forces (e.g. negative energy gradients) corresponding to each

geometry, stacked into a vector. For the sake of simplicity we will assume that the geometry

encoded in xi is simply represented in Cartesian coordinates, but we will introduce a

descriptor in the final formulation of the model. In addition, the norm of the coefficients

Ω = [ω⊤
1 , . . . ,ω⊤

M ]⊤ is penalized as way to regularize the complexity of the solution. The

regularization strength is tuned via a hyper-parameter λ.

To find the minimum, we set the derivative of this cost function to zero:

∂L
∂Ω

= 2
M∑
i

J⊤Φi
(JΦiωi −Fi )+2λΩ= 0 (A.11)

giving

M∑
i

J⊤Φi
JΦiωi − J⊤Φi

Fi =λΩ

→Ω=
(
λ1F +

M∑
i

J⊤Φi
JΦi

)−1 M∑
j

J⊤Φ j
F j

(A.12)
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We will now aggregate the Jacobi matrices for all training points into a large matrix

JΦ = [JΦ1 , . . . ,JΦM ] of dimension 3N M ×F and use pure matrix notation. We continue

by applying the Woodbury matrix identity:

Ω= (J⊤ΦJΦ+λ1F )−1J⊤ΦF

= J⊤Φ ((JΦJ⊤Φ+λ13N M )−1F)  
A

(A.13)

This way we can solve the linear system above in 3N M ≪ F . Forces for new inputs are

then computed by evaluating Fnew = JΦnewΩ, which can also be written as

Fnew = JΦnew J⊤ΦA. (A.14)

This is helpful because JΦJ⊤Φ and JΦnew J⊤Φ are (co-)variances between derivative observation

in feature space and we can apply the ’kernel trick’ to express them via a kernel function

that foregoes an explicit mapping [81]. We write the Jacobian JΦ = ∇Φ⊤ as the outer

product of feature transform and derivative operator and then

JΦJ⊤Φ =∇Φ⊤(∇Φ⊤)⊤

=∇Φ⊤Φ
κ

∇⊤ (A.15)

to substitute the inner product of feature transformations with a scalar-valued kernel

function. The force field kernel in GDML is thus a matrix with entries ki j = ∂2k/∂xi∂x′
j

(see Eq. A.1). Finally, we rewrite Eq. A.14 in a more verbose way and obtain with A =
[α⊤

1 , . . . ,α⊤
M ]⊤

f̂F(x) =
M∑
i

3N∑
j

(αi ) j
∂

∂x j
∇xk(x,xi ) (A.16)

for the force field model, where ∂/∂x j is the partial derivative with respect to the j -th

component of the input vector. The corresponding reconstruction of the potential energy

surface is recovered up to a constant via integration:

f̂E (x) =
M∑
i

3N∑
j

(αi ) j
∂

∂x j
k(x,xi )+ c. (A.17)

Due to linearity of integration, the expression for the energy predictor f̂E (x) is identical up

to the second derivative operator acting on the kernel function. The inverted sign of the

energy is accounted for by use of the Hessian in Eq. A.16.
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A.2.1 Integration constant

The sum of squared deviations between predicted and reference energy at every training

point is minimized to estimate the integration constant. We minimize the loss function

L(c) =
M∑
i

(
∫

f̂F(xi )dx −Ei )2

=
M∑
i

(− f̂E (xi )+ c −Ei )2,

(A.18)

which unsurprisingly gives the mean of energy deviations at every training point

∂L
∂c

= 2
M∑
i

c − (Ei + f̂E (xi )) = 0

= 2Mc −2
M∑
i

Ei + f̂E (xi )

→ c = 1

M

M∑
i

Ei + f̂E (xi )

(A.19)

as the best estimate for the integration constant.

A.2.2 Bi-partite matching cost matrix

To match a pair of molecular graphs, we solve the optimal assignment problem for the

eigenvectors of both adjacency matrices using the Hungarian algorithm [138]. As input,

this algorithm expects a matrix with all pairwise assignment costs CM = −M, which is

constructed as the negative overlap matrix from Eq. 4.2. A penalty matrix with entries

(CZ)i j = abs(zi − z j )ϵ is added to prevent the assignment of non-identical nuclei for suffi-

ciently large ϵ> 0. Here, Z = [z1, . . . , zN ]⊤ are the charges for each nuclei in the molecule.

The final const matrix is then

C = CM +CZ. (A.20)

A.2.3 Permutation matrices notation

Throughout this thesis, we use permutation matrices P(τ) ≡ P in column representation,

obtained by permuting the columns of the identity matrix of dimension N × N , such

that (P)i j = 1 if j = τ(i ) and 0 otherwise. The multiplication Px will hence permute

the rows of the column vector x. We do not distinguish between permutation matrices

acting on different representations of the same data. While PR⊤ permutes the atoms of
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a molecule represented by a 3× N matrix R = [r1, . . . ,rN ] of Cartesian coordinates, PX

represents the same permutation, but acting on a linearized input space X representation

RX = [r⊤
1 , . . . ,r⊤

N ]⊤ of dimension 3N ×1.



Appendix B

Numerical results

B.0.1 Energy-trained baseline model

Table B.1 Accuracy of the converged energy-based predictor. All training set sizes M are chosen to
match the complexity of the optimization problem in the corresponding force model (number of
samples times number of partial derivatives). Energy errors are in kcal mol−1, force errors in kcal
mol−1 Å−1.

Dataset M

Energy error Force error

Magnitude Angle

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Benzene 36K 0.04 0.06 0.80 1.16 1.00 1.38 0.0196 0.0350

Uracil 36K 0.03 0.03 0.44 0.62 0.45 0.54 0.0092 0.0148

Naphthalene 54K 0.02 0.03 0.40 0.55 0.43 0.52 0.0079 0.0129

Aspirin 63K 0.03 0.04 1.51 2.12 0.98 1.28 0.0220 0.0311

Salicylic acid 48K 0.10 0.13 0.45 0.63 0.39 0.51 0.0052 0.0090

Malonaldeh. 27K 0.11 0.16 0.83 1.16 0.80 1.05 0.0128 0.0230

Ethanol 27K 0.09 0.14 0.76 1.07 0.92 1.22 0.0116 0.0246

Toluene 45K 0.06 0.08 0.52 0.71 0.50 0.61 0.0087 0.0146
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B.0.2 Non-conservative baseline model

Table B.2 Accuracy of the naïve force predictor based on a training set size of M = 1000. This
model learns all output components independently, without constraining the predicted forces to
be energy conserving. It is identical to the GDML model in all other aspects. Energy prediction
errors are not available, because the resulting force fields are not integrable.

Dataset

Force error [kcal mol−1 Å−1]

Magnitude Angle

MAE RMSE MAE RMSE MAE RMSE

Benzene 14.67 20.01 19.38 22.39 0.4496 0.5048

Uracil 5.91 11.29 1.90 2.84 0.1341 0.1859

Naphthalene 6.50 11.16 2.17 3.13 0.1255 0.1748

Aspirin 8.80 12.95 6.64 9.29 0.1481 0.1948

Salicylic acid 6.13 11.28 2.36 3.35 0.1183 0.1662

Malonaldehyde 19.98 27.35 17.99 22.79 0.4157 0.4664

Ethanol 18.15 24.78 24.12 30.89 0.3938 0.4506

Toluene 15.66 23.29 11.85 16.09 0.3583 0.4109
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B.0.3 Probability distributions of the dihedral angles in ethanol

(sGDML@CCSD(T) versus sGDML@DFT)

Figure B.1 Comparison of probability distributions of the dihedral angles (methyl rotor vs. hydroxyl
rotor) of ethanol obtained from classical and path-integral MD simulations at 300 K. We contrast
the results from a sGDML model trained on CCSD(T) versus DFT reference calculations. The
inclusion of nuclear quantum effects improves the sampling of the PES for both levels of theory.
The sampling was performed during 0.5 ns of simulation, using 16 beads for PIMD.
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Appendix C

Software implementation

Partial results of the presented work have been published in:

• Chmiela, S., Sauceda, Poltavsky, I., H. E., Müller, K.-R., Tkatchenko, A.

(2019) "sGDML: Constructing Accurate and Data Efficient Molecular Force

Fields Using Machine Learning". In: Computer Physics Communications,

10.1016/j.cpc.2019.02.007

C.0.1 User Input

The essential ingredient for training and validating an sGDML model is a user-provided

reference dataset, specifically a set of Cartesian geometries with corresponding total

energy and atomic-force labels. Those labels can be generated from any level of theory, e.g.

ab initio calculations, any method derived from DFT (e.g. Kohn-Sham or other orbital-free

variants) or even regular FFs, since the sGDML model is not biased towards a specific

kind of reference data. Force labels are needed, because our approach implements energy

conservation as an explicit linear operator constraint, by modeling the FF reconstruction

f̂F = −∇ f̂E as the transformation of an underlying energy model [144]. Force learning

affords data-efficiency advantages, as they are more informative per example, while being

generally cheaper to compute analytically than collecting the same derivative information

via numerical approximation from energy examples. Since forces are true quantum-

mechanical observables, they preserve all information regarding the quantum nature of

the system and therefore pass it on to the model.

A key consideration when composing a reference dataset, is the choice of sample

region on the PES. Generally, we want to keep the covered area tight, avoiding the inclusion
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Table C.1 Training times for various sGDML models based on 1000 reference data using an analytic
solver on a Intel Xeon E5-2640 CPU at 2.40GHz. For the same models we also list the force and
energy prediction performances for sequential evaluations of individual geometries and batch
evaluations of 1000 geometries on a 2.8 GHz Intel Core i7 notebook.

Dataset Training [min]
Prediction [geom./sec]

Sequential Batch

Benzene 1.9 434.7 676.3

Uracil 2.0 1103.9 5326.5

Naphthalene 5.8 446.9 693.1

Aspirin 9.5 295.0 430.3

Salicylic acid 4.7 894.2 3652.1

Malonaldehyde 2.5 1001.0 3071.1

Ethanol 2.4 826.2 2557.4

Toluene 3.6 326.3 430.4

Paracetamol 7.9 208.5 247.1

Azobenzene 17.8 182.6 214.0

of configuration space that will not be explored in the specific application of the trained

model. With that being said, we also aim to limit the need for extrapolation, which usually

carries a performance penalty. All isomeric conformers of interest, including the transition

pathways, need to be well represented in the dataset.

The sGDML model is unit-agnostic, meaning that the energy and force predictions

will simply inherit the units of the training labels. Particular attention should be paid to

ensuring that the unit of force (e.g. kcal mol−1Å−1) is consistent with the unit of energy

(e.g. kcal mol−1) and the unit of length (e.g. Å) used in the provided energy labels and

geometries, respectively. While the model will quietly convert different length units

between input and output, it is not able to adapt the energy unit. As a good practice, we

strongly advise against mixing units in the same dataset, since an implicit unit conversion

within the trained model is not a behavior that the user expects.

All geometries within a dataset must use a consistent atom indexing and every de-

rived model should be queried using the same order. This is because the invariance of

sGDML models is restricted to permutational symmetries that are physically feasible and

statistically relevant, which does not include the full symmetry group of the molecule in

general. Arbitrarily indexed query geometries may not fall within the set of interchange-

able representations and hence yield undefined outputs. While it would be technically
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straightforward to extend the sGDML prediction routine to support randomly index inputs,

we deliberately omitted that functionality in favor of evaluation speed.

We use NumPy binary files as the native file format for our application, but include

converters from and to various popular plaintext formats. Support for additional file types

can be easily extended, by using one of the included conversion scripts as a template. One

of the main reasons for using a custom file format is the inclusion of metadata that makes

the origin of each model traceable and data integrity verifiable.

C.1 Usage

Our program includes a set of convenience routines that assist the user in reconstructing

a sGDML model from beginning to end. It will walk the user through the complete process

of data sampling, symmetry recovery, training with hyper-parameter optimization and

validation to generate a ready-to-use model. Greater control over this procedure may be

taken by running the involved subroutines individually, either via the CLI or using the

Python interface of the train and predict modules. From the CLI, the assisted training

process is initiated by simply calling

$ sgdml all <dataset_file> <n_train> <n_validate> [<n_test>] \

[--sig <list_or_range>]

with a path to the reference dataset as the argument. The parameter n_train specifies

how many data points are used for training: larger training sets yield more accurate

models, but at increased computational cost. During model selection, the performance of

a model candidate is assessed based on the comparison of n_validate predicted forces

and energies with the true labels. Optionally, the number of validation points n_test
can be specified, otherwise this parameter will be set to the maximum value for the best

possible final estimate of the generalization error. Large validation and test datasets are

desirable as they only increase computational cost marginally, while yielding better error

estimates. Additionally, the search grid for the hyper-parameter σ can be specified as a

space-delimited list (–sig <s1> <s2> ... <sN>), or a range of evenly spaced values

within a given interval (–sig <start>:<step>:<stop>), or a combination of both.

Training, validation and test dataset are sampled from the provided bulk dataset

without overlap, unless individual datasets (-v <validation_dataset> and/or

-t <test_dataset>) are specified. For optimal prediction performance, it is crucial

for the training set to represent the distribution the model will encounter. Likewise,

we can only reliably assess its expected generalization error if we validate and test on

representative datasets. With the assumption that the bulk dataset adequately describes
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the molecular configuration space that will be visited in the application of trained model,

our sampling method automatically extracts stratified subsets that properly follow the

estimated probability energy density function of the full dataset.

C.1.1 Training

Every sGDML model emerges from a training task, which is a file that packages the

configuration for a particular training run, including the indices of the training and

validation data points, the symmetries of the molecule, as well as a particular hyper-

parameters choice. A batch of training tasks for a range of hyper-parameters is generated

with the create-command

$ sgdml create <dataset_file> <n_train> <n_valid> [-sig <list_or_range>]

which sets up a directory containing the corresponding task files. All parameters used

here, have been introduced previously. This routine will sample training and validation

datasets form the provided bulk dataset, recover the symmetries in the geometry and

package everything into individual tasks for each σ in the provided range.

Using the train-command and the task directory created in the previous step, the

training process is invoked with

$ sgdml train <task_dir_or_file>

For each training task, this resource intensive process creates a model candidate in the

same directory. Alternatively, a path to a single file can be passed to execute an individual

task, which is useful when submitting batch jobs to distributed computing environments.

Parallelization is easy, because the full training dataset is stored in each task file, so that

each training job can be performed in isolation, without referencing the potentially large

common bulk dataset. All model candidates are stored in the task directory. In the next

step, we will evaluate the performance of each model on the validation set and select the

leading hyper-parameter choice.

The validation process is invoked via

$ sgdml validate <model_dir_or_file> <dataset_file>

for the whole directory or individual models. As the validation dataset has been predeter-

mined during training task creation and stored in the model, we must pass the originally

referenced dataset, otherwise the program can not continue.

Finally, we keep the best performing model from the full set of candidates based on the

lowest root-mean-square error (RMSE), which is the metric used in the objective function

for the parameterization of the model.
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$ sgdml select <model_dir>

Because the validation dataset was used to determine the optimal hyper-parameters, it

participated in the training process, very much like the actual training data. To estimate

the generalization behavior of the final model in an unbiased way, we will hence use a

third independent test dataset and measure its performance once again by calling

$ sgdml test <model_file_or_dir> <dataset_file> [<n_test>]

The reliability of this estimate can be improved by using as many data points as available.

Omitting the last parameter selects all points for the dataset that were not involved in the

training process of the model.

Memory requirements

In this implementation, we train the sGDML analytically, i.e. by solving a linear system in

closed form. While this approach is faster and more accurate than numerical methods

(i.e. gradient descent), it is also highly memory demanding. Analytic solvers require the

complete kernel matrix to be kept in memory at once. With (M ×3N )2 double precision (8

byte) entries, it dominates the memory footprint of the training process. Those numbers

can be used as a rough guideline for choosing a suitable hardware platform.

C.1.2 Inference

The sGDML force estimator trained on M reference geometries, each with 3N partial

derivatives and S symmetry transformations, takes the form

f̂F(x) =
M∑
i

3N∑
l

S∑
q

(Pqαi )l
∂

∂xl
∇k(x,Pq xi ). (C.1)

Due to linearity of integration, the corresponding energy predictor is identical up to

the second derivative operator on the kernel function, which allows the simultaneous

computation of both quantities without computational overhead. It is easy to see that this

expression offers a lot of potential for parallelization, which we fully exploit in our code.

The amount of concurrent work performed by our implementation is governed by two

optional parameters that depend on the host hardware: the number of parallel processes

num_processes and the chunk size chunk_size in which data items are processed at

once. A chunk refers to a vectorized operation that is passed as one big task to Python’s

underlying high-performance libraries. Both parameters can be automatically tuned for

optimal performance by simply calling
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gdml_predict.set_opt_parallelism(n_reps=100)

after instantiation of the prediction class. This routine runs a small benchmark that

tests feasible configurations by repeatedly calling the predict-function while measuring

execution time. The number of repetitions n_reps can be increased to improve the

reliability of the benchmark, but also increase its duration. Because this routine takes a

few seconds to complete, its runtime is only amortized when followed by a large amount

of FF evaluations.

Once a sGDML model is trained, it can be integrated into external programs via the

gdml_predict module. A new model instance is created using

gdml_predict = GDMLPredict(model,[chunk size],[num_processes])

Force and energy predictions for a geometry are then simply generated using

r,_ = io.read_xyz(geometry_path)

e,f = gdml_predict.predict(r)

This function also accepts a batch of geometries at once, which is useful in applications

where multiple independent geometries need to be computed at the same time, e.g. path

integral molecular dynamics with a variety of thermostats and statistical ensembles, or in

transition path search.

C.2 Example Application: Paracetamol

To outline the process of FF construction from beginning to end, we consider the parac-

etamol molecule as an example. Our aim is to create a model for use in long time-scale

MD simulations at room temperature (300 K) and an accuracy level of PBE0+MBD. This

application is interesting, because a direct sampling at this level of theory would be

prohibitively expensive and require hundreds of millions of CPU hours.

First, we will generate a minimal training set that captures all relevant geometrical

configurations. Unreliable predictions are prevented by ensuring that the planned sim-

ulations never wander off the regime of configuration space that is covered by training

data. In the same vein, we want to exclude sections of the PES that will never be queried

in the actual application of the trained model as this would unnecessarily complicate the

reconstruction task. Here, we use a sufficiently long MD trajectory at a higher temperature

of 500 K to provide the appropriate coverage. The actual training set is then constructed

as a small subset of the original trajectory whose energies follow the Maxwell-Boltzmann

distribution (see Figure C.1). Foregoing a prohibitively expensive long timescale MD

simulation at the theory level DFT-PBE0+MBD with a large basis set, we use a cheap
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DFT-PBE+TS trajectory as the geometry sampling method and only recompute the corre-

sponding energy and force labels for the small subset of selected training points at the

higher level of theory.

We remark that this sampling scheme is based on the assumption that the PBE+TS

energy surface is a good proxy for the topographical structure of the PBE0+MBD surface, as

overly strong approximations may yield a sampling profile that misses important features.

It is furthermore important to choose a fine-enough time step for the MD simulation, so

that the relevant areas of configuration space are sampled with correct probability. As a

rule of thumb we use 1/10 of the period of the highest frequency oscillator in the system

(i.e. hydrogen stretching frequencies). For example, if the highest vibration frequency in

paracetamol is 3600 wavenumbers (i.e. period of 9.3 fs), then our time step works out to

∼ 1 fs. We have obtained the simulated trajectory as a dataset file in extended XYZ format,

which contains our collected geometries with corresponding forces in additional columns

and the energy labels in the comment line. The next step is to convert it to the native

sGDML binary format, which is the basis for all forthcoming steps:

$ sgdml_dataset_from_xyz.py paracetamol.xyz

With the resulting dataset file d_paracetamol.npz, we will now run the fully automated

sGDML training assistant which will walk us through all steps necessary to obtain a fully

trained and tested model:

$ sgdml all d_paracetamol.npz 1000 500

We have chosen to reconstruct the PES using 1000 training points, sampled from the

provided dataset file, and to use 500 separate geometries to validate the performance of

our candidates during model selection. We omit the argument for the number of test

data points, as we want the program to test the resulting model on all remaining data

points from the set. The assistant will now automatically split the dataset, train a model

for a series of hyper-parameter candidates, validate all models, select the most accurate

one, finally test it and output a model file m_paracetamol.npz. Using only this file, we

can easily use the newly reconstructed paracetamol force field in existing applications:

import numpy as np

from sgdml.predict import GDMLPredict

model = np.load(’m_paracetamol.npz’)

gdml = GDMLPredict(model)

and

make predictions using

e,f = gdml.predict(r)
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Interfaces to two popular FF simulation engines are already included with our software

package: a Calculator for ASE [130] and a i-PI [131] ForceField-object. ASE enables

various standard simulation tasks including structure optimization, vibrational analysis,

molecular dynamics simulations and nudged elastic band calculations, whereas i-PI im-

plements path integral MD to study molecular phenomena that are driven by nuclear

quantum effects and a wide variety of sophisticated methods to compute quantum observ-

ables [131]. In the following, we present in step-by-step fashion how to integrate sGDML

with ASE and i-PI and demonstrate practical applications for which it is useful.

ASE: Normal mode analysis

We will now proceed with a normal mode analysis of paracetamol using ASE. After attach-

ing the SGDMLCalculator to the Atoms-object, we relax an initial geometry paracetamol.xyz
with the BFGS optimizer. Then we simply calculate the vibrational modes in the harmonic

approximation using Vibrations:

from sgdml.intf.ase import SGDMLCalculator

from ase.io.xyz import read_xyz

from ase.optimize import BFGS

from ase.vibrations import Vibrations

mol = read_xyz(’paracetamol.xyz’).next()

sgdml = SGDMLCalculator(’m_paracetamol.npz’)

mol.set_calculator(sgdml)

vib = Vibrations(mol)

vib.run()

vib.summary()

vib.write_jmol()

vib.clean()

This process will output a table with all vibrational frequencies, but also write a file

vib.xyz that can be imported into Jmol to visualize the vibrational modes. To validate

the accuracy of our normal mode frequencies, we compare directly with the spectrum

from DFT-PBE0+MBD using FHI-aims. Figure C.1 outlines the difference between the two

sets of normal mode frequencies showing a maximum deviation of only ∼4 cm−1. This
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result evinces the robustness of our model given that no explicit information was provided

regarding the normal modes.

i-PI: Molecular dynamics

In physics and chemistry many of the molecular phenomena are driven by nuclear quan-

tum effects (NQE), in particular for protons, this nuclear delocalization gives rise to numer-

ous quantum phenomena e.g. zero-point energy and tunneling. Different methods have

been developed to incorporate such effects in the BO approximation, path integral molec-

ular dynamics (PIMD) being one of the most widely used. The i-PI software offers an effi-

cient PIMD implementation including state-of-the-art integrators and thermostats [131].

The sGDML model can be easily incorporated in i-PI as a force and energy provider class
FFsGDML(). Once the sGDML force field is available in i-PI, running a MD simulation is

straightforward. A minimal set up requires the initial coordinates paracetamol.xyz, the

sGDML model file m_paracetamol.npz and the input file input.xml which specifies the

parameters of the simulation e.g. force field, ensemble, temperature, thermostat, inte-

gration step, etc. Then running the MD simulations requires just one simple command:

python i-pi input.xml.

From these MD simulations, we can compute a wide variety of properties such as

finite temperature vibrational spectra, free energy surfaces, radial distribution functions,

energies, heat capacities, etc. As an example, we analyze the effect of the temperature

on the vibrational spectrum. Figure C.1 shows the comparison of the normal modes

and vibrational spectra at different temperatures (50K and 450K) using classical MD

simulations. From this comparison, the effect of the anharmonicities at high temperatures

is evident, given the noticeable red-shift in the frequency peaks. Beyond classical MD, we

can explore the NQE by running PIMD in i-PI. An important measure of the NQE is the

interatomic distance distributions, h(r ), shown in Figure C.1. The deviation between the

two curves for classical MD and PIMD gives the magnitude of the delocalization of mean

pair distances. This analysis provides an idea of the delocalization of the atomic nuclei in

the molecule due to NQE.
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Figure C.1 Top: From a provided dataset of molecular geometries with corresponding energy and
force labels, our sGMDL implementation creates a fully cross-validated FF model. Bottom: This
lightweight model can then be used to speed up various PES sampling intensive applications,
like molecular dynamics or the computation of transition paths. Interfacing ASE allows for easy
computation of normal modes, vibrational spectra or nudged elastic band optimizations (middle
row). Our interface to i-PI enables path integral molecular dynamics simulations (PIMD), which
we use to compute the free energies and interatomic distance distributions h(r) with classical MD
and PIMD (bottom row).
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