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Abstract

¿e ubiquitous long-range van der Waals interactions play a central role in nearly all
biological and modern synthetic materials. Yet the most widely used theoretical method
for calculating material properties, the density functional theory (DFT) in semilocal
approximation, largely neglects these interactions, which motivated the development of
many di�erent vdW models that can be coupled with DFT calculations. Despite these
e�orts, existing vdW models are either limited in scope (atomic models), in e�ciency
by working with unoccupied one-particle states (e.g., random-phase approximation), or
limited to pairwise approximation (nonlocal density functionals). ¿e work in this thesis
paves way towards a uni�ed vdWmodel that combines best elements from these di�erent
classes of the vdWmodels.

To this end, we developed a uni�ed theoretical framework based on the range-separated
adiabatic-connection �uctuation–dissipation theorem that encompasses most existing
vdW models. We show that the formulations of the theorem in terms of the density
response function and the nonlocal polarizability are equivalent, introduce the concept
of the semilocal e�ective polarizability and the corresponding e�ective dipole operator,
and discuss the most popular vdW models in terms of these two quantities. ¿is uni-
�ed perspective suggests that a particularly e�ective combination should be that of the
local polarizability functionals and the many-body dispersion (MBD) approach based on
quantum harmonic oscillators.

We analyze the MBD correlated wave function on the prototypical case of π–π inter-
actions in supramolecular complexes and �nd that these interactions are largely driven
by delocalized collective charge �uctuations, and that the charge density polarization
resulting from these �uctuations is well described by the underlying harmonic oscillator.
¿is demonstrates the close correspondence between the simple harmonic-oscillator
model of the polarization, and the actual density response of the true electrons, further
supporting the use of polarizability functionals of the density to parametrize the MBD
model Hamiltonian.

To identify a balanced short-range density functional to accompany the long-range
vdWmodel, we present a comprehensive study of the interplay between the short-range
and long-range energy contributions in eight semilocal functionals and three vdWmodels
on a wide range of systems. ¿e binding-energy pro�les of many of the DFT+vdW
combinations di�er both quantitatively and qualitatively, and some of the qualitative
di�erences are independent of the choice of the vdWmodel, establishing them as intrinsic
properties of the respective semilocal functionals. We identify the PBE functional to have
the most consistent e�ective range across di�erent system types.

Finally, we investigate the performance of the Vydrov–Van Voorhis polarizability func-
tional across the periodic table, identify systematic underestimation of the polarizabilities
and vdW C6 coe�cients for s- and d-block elements, and develop an orbital-dependent
generalization of this functional to resolve the issue. We establish the quadrupole polariz-
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abilities calculated from such a polarizability functional as a natural parameter governing
the range separation in a combined DFT+vdWmodel. Overall, our results provide the
theoretical framework and key elements that are necessary for a formulation of a general
and accurate vdWmodel.
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Zusammenfassung

Van der Waals-Wechselwirkungen (vdW) sind allgegenwärtig und spielen eine zentra-
le Rolle in einer großen Anzahl biologischer und moderner synthetischer Materialien.
Die am weitesten verbreitete theoretische Methode zur Berechnung von Materialeigen-
scha en, die Dichtefunktionaltheorie (DFT) in semilokaler Näherung, vernachlässigt
diese Wechselwirkungen jedoch größtenteils, was zur Entwicklung vieler verschiedener
vdW-Modelle führte welche mit DFT-Rechnungen gekoppelt werden können. Unge-
achtet dieser Bemühungen sind bestehende vdW-Modelle limitiert entweder in Hin-
sicht auf ihren Anwendungsbereich (atomistische Modelle), ihre E�zienz im Umgang
mit unbesetzten Einteilchen-Zuständen (z.B. Random-Phase-Approximation) oder auf
Zweiteilchen-Näherungen (nichtlokale Dichtefunktionale). Die hier vorgestelle Arbeit
ebnet den Weg hin zu einem vereinheitlichten vdW-Modell welches die besten Elemente
dieser unterschiedlichen Klassen von vdW-Modellen vereint.

Zu diesem Zweck haben wir einen vereinheitlichten theoretischen Rahmen geschaf-
fen, der auf dem Reichweite-separierten Adiabatischer-Zusammenhang-Fluktuations-
Dissipations-¿eorem aufbaut und die meisten existierenden vdW-Modelle umfasst. Wir
zeigen, dass die Formulierungen des ¿eorems im Rahmen der Dichte-Antwortfunktion
und der nichtlokalen Polarisierbarkeit äquivalent sind, führen das Konzept der semilo-
kalen e�ektiven Polarisierbarkeit sowie des entsprechenden e�ektiven Dipoloperators
ein und diskutieren die populärsten vdW-Modelle im Kontext dieser beiden Größen.
Diese vereinheitlichte Perspektive legt nahe, dass eine besonders e�ektive Kombination
durch die des Funktionals der lokalen Polarisierbarkeit und des Ansatzes der ‘Many-Body
Dispersion’ (MBD), der auf quantenmechanischen harmonischen Oszillatoren beruht,
gegeben sein sollte.

Wir analysieren die MBD-korrelierte Wellenfunktion am prototypischen Beispiel
von π–π-Wechselwirkungen in supramolekularen Komplexen und stellen fest, dass diese
Wechselwirkungen größtenteils durch delokalisierte kollektive Ladungs�uktuationen
entstehen und die aus diesen Fluktuationen resultierende Polarisation der Ladungsdichte
gut im Modell des harmonischen Oszillators beschrieben werden kann. Dies verdeutlicht
den engen Zusammenhang zwischen dem einfachen harmonischen Oszillator-Modell
für die Polarisation und der tatsächlichen Dichteantwort der wahren Elektronen. Dies
wiederum spricht für die Verwendung von Polarisierbarkeitsfunktionalen der Dichte, um
den MBD-Modellhamiltonoperator zu parametrisieren.

Um zu dem langreichweitigen vdW-Modell ein ausgewogenes kurzreichweitiges Dich-
tefunktional zu identi�zieren, präsentieren wir eine umfassende Untersuchung zum
Zusammenspiel der kurz- und langreichweitigen Energiebeiträge in acht semilokalen
Funktionalen und drei vdW-Modellen für eine große Spanne von Systemen. Die Bin-
dungsenergiepro�le vieler der DFT+vdW-Kombinationen unterscheiden sich sowohl
quantitativ als auch qualitativ stark voneinander, wobei einige der qualitativen Unter-
schiede unabhängig vom vdW-Model sind und damit intrinsische Eigenscha en des
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verwendeten semilokalen Funktionals darstellen. Das PBE-Funktional stellt sich als jenes
mit dem konsistentesten e�ektiven Bereich für verschiedene Systemtypen heraus.

Schließlich untersuchen wir die Performance des Vydrov-Van Voorhis-Polarisierbar-
keitsfunktionals über das Periodensystem der Elemente hinweg und identi�zieren eine
systematische Unterschätzung der Polarisierbarkeiten und vdW-C6-Koe�zienten für s-
und d-Block-Elemente. Als Lösung entwickeln wir eine orbitalabhängige Verallgemeine-
rung des Funktionals. Die aus einem solchen Polarisierbarkeitsfunktional berechneten
Quadrupol-Polarisierbarkeiten werden als natürliche Parameter etabliert, die die Be-
reichsseparierung in einem kombinierten DFT+vdW-Modell regeln. Insgesamt liefern
unsere Ergebnisse den theoretischen Rahmen und die Schlüsselelemente, die für die
Formulierung eines allgemeinen und akkuraten vdW-Modell nötig sind.
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Preface

¿is doctoral thesis is a result of my four years at the Fritz Haber Institute in Berlin, which
were directed at development of a more general and accurate model of van der Waals
(vdW) interactions in molecules and materials. ¿e presented work contributes to this
goal in several ways. Chapter 1 gives a broad conceptual background that establishes
what vdW forces are, the historical development of their understanding, and how they
�t within the more general and fundamental physical laws of our world. Chapter 2
reviews basic concepts of quantum chemistry and solid-state physics used throughout the
thesis. Chapter 3 develops a formal mathematical classi�cation of existing methods for
modeling vdW interactions, which puts them within a single framework formulated in
terms of the nonlocal dipole polarizability, and makes relationships between the di�erent
models apparent. For instance, it shows that the properties of the quantum harmonic
oscillator underlie many seemingly unrelated polarizability models, from continuous
to coarse-grained functionals of the electron density. Chapter 4 then presents several
new developments within a particular vdW model, the many-body dispersion (MBD)
method, while Chapter 5 applies the newly derived results for the interacting MBD
wave functions to the problem of π–π interactions. ¿is study also demonstrates that
the harmonic-oscillator model is able to capture not only the coarse-grained electronic-
response properties in molecules and materials, but also the redistribution of the electron
density caused by vdW interactions. ¿is motivates the focus on the spatial distribution
of the polarizability model in the last chapter. Chapter 6 is concerned with the problem
of balancing semilocal and nonlocal contributions to the electron correlation energy,
which is central to description of vdW-bound systems in equilibrium. ¿is work partially
rationalizes the empiricism involved in development of new vdWmodels stemming from
the use of damping functions. Chapter 7 brie�y shows that any polarizability model within
the MBD framework can be used not only in standard nanoscale vdW models, which
assume that the electromagnetic force acts instantly, but also to model microscale systems,
where the �nite speed of light must be taken into account. Finally, Chapter 8 presents a
new orbital-dependent polarizability functional of the electron density, and outlines how
it can be used within the MBD framework to formulate a new model of vdW interactions.

¿is thesis would never come to life without the support and advise of my supervisor
Alexandre Tkatchenko. ¿e countless discussions with him inspired many thoughts
presented on the following pages. He also taught memany valuable lessons about scienti�c

ix



x PREFACE

writing, publishing, and general wisdom about how modern scienti�c research is done.
I am indebted to Robert DiStasio for stimulating conversations and tireless comments
about my English—he showed me the art of constructing precise sentences. My pursue of
the doctoral degree would not be possible without the �nancial support of the Max Plack
Society, which was granted by Matthias Sche�er, the director of the theory department
at the Fritz Haber Institut in Berlin. Finally, I would like to express gratitude to all the
members of the department, whose excitement about science gave me a great sense of
motivation.

Jan Hermann
October 2017



Chapter 1

Introduction

This chapter gives a conceptual introduction to the topic of van der Waals interactions,
the history of the development of their theory, their relation to the current understand-
ing of the fundamental laws of nature, and the approximations thereof that proceed
the mathematical treatment of van der Waals interactions in the next chapters.

1.1 What are noncovalent interactions

All visible matter is made from atoms, the particles composed from very small but heavy
and slow nuclei on one hand and light electrons moving at high speeds around the nuclei
on the other, mutually attracted by the fundamental electromagnetic force, while nuclei
are repelled from other nuclei by the same kind of force, as are electrons from other
electrons. Because the electrons and their motion are very manifestly governed by the
laws of quantum rather than classical mechanics, they behave more as electron liquid
�lling potential vessels around the nuclei, rather than as planets orbiting stars. When
atoms of certain elements are arranged in certain ways, they are attracted to each other
to form molecules, thin �lms, liquids, gels, glasses, or crystals. ¿ese e�ective forces
between atoms, both covalent and noncovalent, are a direct result of the fundamental
electromagnetic force between electrons and nuclei.

A key property of the electromagnetic force in the context of interactions in matter is
that it is long-ranged, which means that although it does become weaker for larger dis-
tances between atoms, one can always �nd conditions under which it can not be neglected
even when the atoms are far apart. Although there is only one kind of the electromagnetic
force between nuclei and electrons that acts in all matter alike, the resulting bonding be-
tween atoms can be divided into several distinct categories with characteristic properties.
Covalent bonds are derived from short-range interactions between localized electrons,
and their formation and breaking is responsible for a majority of chemical reactions. In
contrast, the arrangement of atoms in metals is such that the electrons become delocalized,
interacting at short range in such a way that they avoid each other and behave as if they

1
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did not interact in the �rst place, while also binding the atoms of the metal together. ¿e
motion of electrons in covalent and metallic bonds can not be explained from the elec-
tromagnetic force only, without considering the peculiar quantum-statistical behavior of
electrons, which dictates that the probability amplitude of any particular con�guration of
electrons must be the negative of the probability amplitude of the same con�guration with
two electrons exchanged. ¿is statistics does not represent any fundamental interaction
between the electrons, but rather restricts their possible motion, independently of the
electromagnetic force. Yet another kind of binding occurs when the mean positions of
the (negatively charged) electrons are displaced relative to the (positively charged) nuclei,
either by hopping to other atoms altogether or by shi ing to a certain degree. ¿e resulting
e�ective charges then interact via the electrostatic force, either strongly at short distances
(ionic bonds) or weakly over long distances. Finally, electrons always try to minimize the
electric repulsion between them, such that at any given moment, when an electron is to be
found on one side of some region of matter, electrons in some other region will be more
likely to be found on the opposite side. ¿is results in instantaneous e�ective charges that
e�ectively interact via the electrostatic force, attracting the two regions together. Unlike
the three previous bonding patterns, this attractive long-range force, named a er Johannes
Diderick van der Waals, can be found between all possible arrangements of atoms.van der Waals

force As a result of the di�erence in strength between the four kinds of binding, structures
strongly bound by covalent, ionic, and metallic bonds o en appear under common condi-
tions as relatively stable entities, whose dynamics is governed by the weaker noncovalent
interactions, which comprise the long-range electrostatic interactions and the van der
Waals (vdW) forces. In this way, water molecules are bound into liquid water and ice,
sheets of graphene are bound into graphite, two strands of DNA into the DNA helix,
linear protein chains into complex 3D structures, molecules of drugs into their crystalline
form in tablets, and when a water droplet sits on a glass surface, the water molecules are
attracted to the surface by those same forces as well. In the temperature range in which life
on Earth thrives, most covalent, ionic, and metallic bonds are too strong to be disrupted
by the thermal motion of atoms, unless catalysts or enzymes are involved. It is o en the
noncovalent electrostatic and vdW interactions that govern the molecular arrangements
under which the catalysts and enzymes become e�ective. ¿is general mechanism directly
relates material structure and function, and explains why energetically demanding chemi-
cal and biochemical reactions can be o en controlled by the much weaker noncovalent
interactions.

1.2 History and nomenclature

¿e �rst suggestion of some sort of general attractive forces between microscopic particles
of matter came from the work on capillary e�ect and surface tension in 17th century, even
before the concept of a molecule was properly established. Two centuries later, van der



1.2. HISTORY AND NOMENCLATURE 3

Waals (1873) published a doctoral thesis in which he introduced his eponymous equa-
tion of state, which improved upon the ideal gas model by assuming a nonzero size of
molecules and an unspeci�ed attractive force between them. ¿anks to its simplicity, yet
great predictive power, the equation and the nature of the attractive force in particular
became the focus of much research. Still before the birth of quantum mechanics, Keesom
(1912) tried to explain vdW forces in gases as alignment of molecules due to electrostatic
interactions between their rigid e�ective charges. Debye (1920) argued that such expla-
nation predicts incorrect dependence of the attraction on temperature and molecular
structure, and suggested a mechanism in which the e�ective charges in molecules are
not rigid, but induced by other molecules in the system. But none of these two theories
explained vdW attraction between the symmetric atoms of rare gases, and, as London
(1937) later argued, they lacked explanation for the general “parallelism in the di�erent
manifestations of the [van der Waals] forces” such as their “identity [. . . ] in the liquid with
those in the gaseous state; the phenomena of capillarity and of adsorption; the sublimation
heat of molecular lattices; certain e�ects of broadening of spectral lines, etc.” ¿e needed
fundamental physical laws were missing at the time, and when Jones (1924) introduced
the now-famous Lennard-Jones potential between atoms at distance R, the attractive
component decayed as 1/R5 instead of the correct 1/R6.

When quantum mechanics was �rmly established in the late 1920s, understanding
of the motion of electrons in atoms and molecules was perhaps the biggest motivation
for its development. One of the main results of quantum mechanics was that electrons
(charges) in matter do not stop moving even in the lowest energy state, and it turned out
to be precisely this movement that is the basis of the vdW attraction. ¿e �rst formal
quantum-mechanical derivation of long-range attraction between symmetric atoms was
done by Wang (1927) for the case of two hydrogen atoms. But it was only London (1930)
who generalized the result to any two molecules, and recognized this interaction as the
origin of the phenomenological attractive force postulated by Van der Waals. Because the
strength of the vdW interaction can be calculated from formulas that are similar to those
describing optical dispersion (since the underlying electronic motions are of related kind),
the attraction was called the dispersion force. Slater and Kirkwood (1931) then closed dispersion force
the full circle by calculating the empirical coe�cient from the vdW equation from �rst
principles for several simple gases.

While the quantum-mechanical origin of vdW forces was now clear, full understanding
of all their manifestations in di�erent materials was nowhere nearer. ¿is was in part
caused by the limitations of London’s description, which were overcome only slowly. It
took 13 years for Axilrod and Teller (1943) and Mutō (1943) to independently extend
London dispersion from interactions of two to interactions of three atoms or molecules.
¿e electromagnetic force between electrons does not act instantly, but travels at the
speed of light. When two oscillating electrons are further apart than is the wavelength
of the light associated with those oscillations, the retarded force becomes out of phase
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with the oscillations, which makes it weaker. Casimir and Polder (1948) realized the
implications of this e�ect for vdW forces and derived the modi�ed 1/R7 law that is valid
at large separations between interacting bodies. It was unfeasible at the time to perform
full quantum-mechanical calculations of vdW forces in condensed matter, which lead
Lifshitz (1956) to derive a phenomenological theory based on classical electrodynamics,
which was complementary to that of London and did not derive the electronic motions
from �rst principles, but rather postulated and parametrized them based on experimental
measurements of material properties. All these theoretical developments were eventually
cemented also by experiment, when Tabor and Winterton (1969) were able to directly
measure the attractive vdW force between two macroscopic plates, both in the normal
and the retarded regime.

Attempts at improved (more general, more accurate) theoretical description of vdW
forces went through renaissance in the last two decades, mainly for two reasons: First, the
known approximations to density-functional theory (DFT)—a method for calculating
structure and stability of molecules and materials that became dominant in physics in
the 1970s and in chemistry in the 1990s—describe to a good degree all kinds of binding
described above except for the vdW force. Second, the advances in molecular biology,
material design, and nanotechnology have led to studies of larger molecular structures and
more heterogeneous materials, in which vdW forces play more important role compared
to simpler compounds. Some of the many new approaches to vdW forces are formulated
fully within DFT, other borrowed ideas from many-body perturbation theory, and yet
other from molecular force �elds. Many of them combine these three approaches in some
way. At the time of writing this thesis, a general, yet accurate and practical model of vdW
forces that works for both molecules and materials is still to be found.

As Margenau put it already in 1939, “the term ‘van der Waals force’ is not one of very
precise usage,” and it holds to this date. Before 1930, it was a name for the unknown
attractive forces responsible for the a/V 2

m term in the vdW equation of state. ¿en London
derived the force from �rst principles for the case of two molecules far apart from each
other (but not too far), and named it the ‘dispersion e�ect’. For some, this meant that
vdW force is the dispersion e�ect, others understood it as the third in line a er the
incomplete theories of Keesom (alignment e�ect) and Debye (induction e�ect), which
all together comprise vdW forces. ¿e former use became more prevalent in physics,
the latter in chemistry. Meanwhile, the term ‘noncovalent interactions’ started to be
used in biochemistry in the 1960s as an umbrella term for the trio of weaker interactions
between (covalently bound) molecules, and began to slowly displace the older term ‘vdW
interactions’ in its broad meaning. To add to the confusion, ‘London dispersion’ has been
o en used to denote only the additive second-order part of the attractive force, while
it became clear that although o en dominant, this level of the theory is not su�cient
in many circumstances. Furthermore, the retarded regime of the vdW force has been
o en called the ‘Casimir force‘. Given this background, I use the term ‘vdW force’ or
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‘vdW interaction’ (rather than dispersion) for the force caused by long-range correlation
between the motions of electron. ¿is de�nition covers both the regime in which �nite
speed of the electromagnetic interaction must be taken into account (retarded regime)
as well as the special case in which the distances are short enough that the speed of light
can be considered in�nite (normal regime). Furthermore, it does not include the Debye
and Keesom e�ects (electrostatic interactions), which do not depend on correlations in
the electronic motion, but only on the mean positions of electrons. I use ‘noncovalent
interactions’ for all intermolecular forces, which include the vdW force as well as the
electrostatic interactions (resulting from both permanent and induced charges). I avoid
the term ‘dispersion force’ and ‘dispersion interaction’.

1.3 Relation to fundamental laws of nature

¿ecurrent working theory of themicroscopic world that is not in con�ict with any known
experiment is the so-called Standard Model of elementary particles, which is a particular
quantum �eld theory, the latter being a general framework for quantum theories. A subset
of the Standard Model that deals with electrons and photons (particles of light) is called
the quantum electrodynamics (QED). For the calculation of the dipole polarizability of a
helium atom, a quantity vastly important for vdW interactions, the di�erence between the
full Standard Model and QED is at tenth signi�cant digit, which is below the resolution of
any modern experiment (see Piela, 2014, Table 3.1). In QED, electrons and photons are
constantly appearing, interacting, and disappearing excitations of electron and photon
�elds, which e�ectively leads to the Coulomb law between electrons, the foundation of
description of electricity, and one of the components of Maxwell equations, the classical
theory of electrodynamics. QED can in principle explain all the vdW e�ects discussed so
far, including the retarded regime, but its equations are too complicated to be solved for
anything but the smallest of atoms. Quantum �eld theory, and hence QED as well, arose
from reconciliation of quantum mechanics with special relativity: while the macroscopic
limit of ordinary quantum mechanics is nonrelativistic classical mechanics, the limit
of quantum-�eld theories is relativistic mechanics. In ordinary quantum mechanics of
electrons, which can be considered a nonrelativistic approximation to QED, electrons
are considered as eternal particles that interact not by exchanging photons, but via a
postulated Coulomb law. Returning back to the polarizability of the helium atom, the
relativistic e�ects make a di�erence at � h signi�cant digit, which, while measurable
in this particular case, is inconsequential for any practical vdW e�ects. For this reason,
ordinary quantum mechanics is o en considered the starting reference fundamental
theory of electrons in chemistry and condensed-matter physics. (On the other hand,
phenomenological models based on classical electrodynamics, which is inherently a
relativistic theory, are naturally able to capture retarded vdW forces, where relativistic
e�ects are dominant.) In quantum mechanics, a system of particles is described by a
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wave function, a complex-valued function of the particle positions whose square gives thewave function
probability that the particles will be found in a given con�guration. ¿e wave function of
a particular system is determined by solving the Schrödinger equation. In this framework,
vdW interactions correspond to the fact that given any two electrons that are likely to
be found around some nuclei, the square of the wave function will be larger when the
electrons are on the far sides of the nuclei than when they are on the near sides, which is
in turn caused by the mutual Coulomb repulsion between the electrons. ¿is imbalance
then leads to the nuclei being pushed by their own electrons towards each other rather
than apart from each other, and this is the attractive vdW force between atoms.

1.4 Routinely applied approximations

¿e previous section established QED as the fundamental theory of electrons, and the
Schrödinger equation as a good �rst-principles starting point, but there is a long string
of approximations that need to be made to reduce the description of, say, a physical rod
of metal to a solution of the Schrödinger equation for electrons. ¿e approximations
made when going from QED to ordinary quantum mechanics are fourfold: First, the
mass of an electron is velocity-dependent under special relativity but not in ordinary
quantum mechanics. ¿is e�ect is negligible in small atoms where electrons move slowly
compared to the speed of light, but it is strong in heavy nuclei, causing, for example, the
yellowish color of gold. ¿e same is true for vdW forces (the polarizability of atoms),
and this type of relativistic e�ects cannot be neglected when treating heavy atoms from
�rst principles. Second, electrons and nuclei have a spin, a purely quantum-mechanical
property that is inherently related to magnetism, which is only postulated in ordinary
quantum mechanics, while it is a theoretical necessity in QED. In ordinary quantum
mechanics, all spin interactions of electrons are either neglected or treated e�ectively,
and it is usually assumed that spin interactions and magnetism do not in�uence vdW
interactions in a signi�cant way. (¿e assumption of the existence of spin in ordinary
quantum mechanics is of course central for establishing the correct quantum-statistical
properties of the electrons.) ¿ird, the Coulomb law acting instantaneously is in direct
violation of special relativity. While this is negligible when the electrons are not too far
apart (normal regime), it is of crucial importance for distant electrons (retarded regime).
¿ese e�ects cannot be easily incorporated directly into ordinary quantum mechanics,
and e�ective theories therefore resort to its combination with the (inherently relativistic)
classical electrodynamics. Fourth, in contrast to quantummechanics vacuum is never truly
empty in quantum-�eld theories, but rather full of virtual particles, a phenomenon called
vacuum polarization. ¿is e�ect, while measurable, is fortunately never quantitatively
important for vdW interactions.

Even once the description of electrons is reduced to ordinary quantum mechanics,
a real molecule or material consists of mutually interacting nuclei and electrons, whose
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motions are fully coupled. But the nuclei are heavier than the electrons by three to four
orders of magnitude, so they move much slower than the electrons. In the approximation
developed by Born and Oppenheimer (1927) (BO), one considers that at any point in Born–Oppenheimer

approximationtime the nuclei are static, and the electrons move in their static electric �eld. ¿is in turn
results in electronic clouds around the nuclei that act electrically on them, creating an
e�ective mean-�eld nuclear force. Because of the conservation of energy in a system
of nuclei and electrons, the forces on the nuclei can be alternatively obtained from the
electronic energy, which, when taken as a function of the nuclear coordinates, is called the
potential energy surface (PES). ¿e BO approximation can fail either at special nuclear
con�gurations called conical intersections, which are related to electronic excitations, or
at very high temperatures that can be found in stars, neither of which is relevant for this
thesis. Once the BO approximation is applied, the motion of electrons becomes a separate
problem that results in a PES, which then serves as an input to another separate problem,
that of the nuclei that move on the PES. ¿e electronic problem directly determines
the optical, electric, and magnetic properties of molecules and materials, as well as their
photoreactivity. ¿e shape of the PES (resulting from the electronic problem) decides
about their structure and stability, as well as aboutmost of their thermodynamic properties
and chemical reactivity. VdW forces are most o en manifested via their e�ect on the
PES and the position and motion of the nuclei, but they can also in�uence directly the
electronic properties (Ferri et al., 2015).





Chapter 2

Electronic many-body problem

This chapter brieæy reviews those basic building blocks of the electronic structure
theory that are necessary for the presentation of the actual new work done for this
thesis. This comprises mostly the density functional theory, the adiabatic-connection
æuctuation–dissipation framework, and the theory of the nonlocal dipole polarizabil-
ity.

2.1 Schrödinger equation

¿e role of the second Newton law (d2r/dt2 = F/m) in nonrelativistic quantummechanics
is played by the Schrödinger equation, which therefore underlies all material discussed
in this thesis. In quantum mechanics, the state of a �xed number, N , of electrons in a
molecule or a crystal is fully speci�ed by a vector, ∣Ψ⟩, from the N-electron Hilbert space.
Measurable properties of the state, such as energy, are expressed as Hermitian operators,
whose eigenvalues are the possibly measured values of the property, the eigenvectors form
a complete orthogonal basis of the Hilbert space, and the probability of measuring an
eigenvalue corresponding to a given eigenvector is given by the square of the inner product
of that eigenvector and the given state. ¿e operator for energy, called Hamiltonian, Ĥ,
has a central role in quantum mechanics because it determines time evolution of the state
via the Schrödinger equation,

∂∣Ψ⟩

∂t
= −iĤ∣Ψ⟩ (in a. u.) (2.1)

¿is equation dictates that the phases of components of a state corresponding to di�erent
energy eigenstates oscillate at di�erent rates, and eventually appear to be random for
a system in equilibrium with its environment, so that one can regard the system as an
ensemble of eigenstates of the Hamiltonian. Because the probability of the n-th eigenstate
(n = 0, 1, . . .) with energy En at temperature T is proportional to exp(−En/T), and because
the energy di�erences between electronic energy eigenstates typically count in at least
thousands of kelvins (1 eV ≐ 12 000K in atomic units), most matter on Earth is found in

9
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the electronic ground state.
¿e nonrelativistic Hamiltonian for N electrons (i = 1, . . . ,N) in electric potential

vext(r) consists of three terms that correspond to the kinetic energy, potential energy, and
interelectronic Coulomb repulsion,

Ĥ = ∑
i

p̂2i
2
−∑

i
vext(r̂i) +∑

i< j

1
∣r̂i − r̂ j∣

≡ T̂ + V̂ext + V̂ee (2.2)

Because electrons are fermions (particleswith half-integer spin), the correspondingHilbert
space is antisymmetric, meaning that when any two electrons are exchanged, the resulting
state vector must be equal to the negative of the original state vector. In a free molecule or
crystal, the nuclei at positions RA with charges qA generate the external potential for the
electrons,

vext(r) = ∑
A

qA
∣r −RA∣

(2.3)

In the basis of eigenstates of the position operators, r̂i , and spin operators, ŝi , one can
de�ne a wave function, Ψ({risi}) = ⟨risi ∣⋯⟨rN sN ∣Ψ⟩, and the search for eigenvectors is
then turned into a di�erential equation,

⎛

⎝
−∑

i

∇
2
i

2
−∑

i
∑
A

qA
∣ri −RA∣

+∑
i< j

1
∣ri − r j∣

− E
⎞

⎠
Ψ(r1s1, . . . , rN sN) = 0 (2.4)

¿e wave function must be antisymmetric, and the solution of the equation gives possible
values of the electronic energy, E, which are the eigenvalues of the Hamiltonian. ¿is
equation cannot be solved analytically already for the simplest of systems, and formulating
approximate, e�cient, yet accurate methods for its solution is historically the biggest
problem in quantum chemistry.

¿e spin variables are discrete (si ∈ {− 1
2 ,

1
2}), and because we operate in nonrelativistic

quantummechanics, they do not enter the Hamiltonian, but only in�uence the form of the
spatial dependence of the wave function via the requirement of the antisymmetry (Pauncz,
1979). ¿e spin part of the wave function can be always written in terms of the one-electron
spin functions, ↑(s) and ↓(s), whose values are either zero or one,

↑( 12) = 1 ↓( 12) = 0
↑(− 1

2) = 0 ↓(− 1
2) = 1

(2.5)

Because of the antisymmetry, the probability of �nding two electrons of the same spin
at the same position is zero, Ψ(rs, rs, . . .) = 0, which is also called the Pauli exclusion
principle.
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2.2 Variational method and energy functionals

One of the oldest approaches to �nding the ground state, but also a foundation of many
modern methods, is based on the fact that the eigenstates of the Hamiltonian, ∣ψn⟩, form
a complete basis,

⟨Ψ∣Ĥ∣Ψ⟩ = ⟨Ψ∣Ĥ∑
n

∣ψn⟩⟨ψn∣Ψ⟩ = ∑
n
En⟨Ψ∣ψn⟩⟨ψn∣Ψ⟩

≥ E0∑
n
⟨Ψ∣ψn⟩⟨ψn∣Ψ⟩ = E0⟨Ψ∣Ψ⟩ = E0

(2.6)

As a result, the expectation value of theHamiltonian is never smaller than the ground-state
energy, and if the energy is understood as a functional of a wave function, E[Ψ], the
ground state can be found at its minimum,

∣ψ0⟩ = argmin
∣Ψ⟩

E[Ψ] (2.7)

(In fact all eigenstates can be gradually found in this fashion, by requiring that they are
orthogonal to all the lower-energy eigenstates.)

Because all terms in the Hamiltonian are either one- or two-electron, do not depend
on spin, and the wave function is antisymmetric, the expression for the energy functional
can be simpli�ed by partial integrations over Ψ (Parr and Yang, 1989),

E[Ψ] = ∫ dr ( − 1
2∇

2
r′γ(r, r′))∣r′=r + ∫ dr vext(r)n(r) +

1
2 ∫∫ dr1dr2

n2(r1, r2)
∣r1 − r2∣

(2.8)

¿e energy is then expressed in terms of the �rst-order density matrix, γ(r, r′), the
electron-pair density, n2(r1, r2), and the electron density, n(r) = γ(r, r). In principle, the
ground-state energy can be found just as well byminimizing this energy functional over all
n, γ, and n2 that originate from the same wave function. But this latter search constraint,
called the N-representability problem, is what makes this approach unfeasible, because
the su�cient conditions for n2 to be N-representable are unknown.¹ ¿e electron-pair
density can be written in terms of the electron density and a pair correlation (distribution)
function, д(r1, r2),

n2(r1, r2) = n(r1)n(r2)д(r1, r2) (2.9)

If the motions of the electrons were uncorrelated, the pair correlation function would be
equal to 1, but in reality the wave-function antisymmetry and the interelectronic Coulomb
term cause it to deviate from 1. By using д = 1 − (1 − д), the interelectronic energy term
can be naturally split into a classical part (also called the Hartree energy), which is simply

¹ More precisely, the energy functional is a functional of the second-order density matrix, γ2(r1r2 , r′1r′2),
from which n2(r1 , r2) = 2γ2(r1r2 , r1r2) and γ1(r, r′) = 2 ∫ dr2γ2(rr2 , r′r2)/(N − 1), and it is γ2 for which
the su�cient N-representability conditions are not known.
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the electrostatic energy, J[n], of the electron charge density, and a nonclassical correction,

⟨Ψ∣V̂ee ∣Ψ⟩ = J[n] −
1
2 ∫∫ dr1dr2

n(r1)n(r2)
∣r1 − r2∣

(1 − д(r1, r2)) (2.10)

¿e total electronic energy can then be written as a sum of four terms,

E[Ψ] = T[γ] + Vext[n] + J[n] + nonclassical term (2.11)

2.3 Mean-äeld models

Unlike the spin part of the wave function, the spatial part cannot be in general expressed
in terms of one-electron functions because of the Coulomb force between electrons.
For instance, the ground state of harmonium, a two-electron system described by the
Hamiltonian in (2.2) with vext(r) = r2/8, has the form

ψ0(r1s1, r2s2) ∼ (1 + 1
2 ∣r1 − r2∣) exp ( − 1

4(r
2
1 + r22))(↑↓ − ↓↑) (2.12)

¿e simple prefactor (1+ 1
2 r12) is caused by the Coulomb term, andmakes the two electrons

more likely to be found far apart than close to each other. In contrast to the Pauli principle
though, the Coulomb term is not strong enough to make the electrons completely avoid
each other, and ψ0(r, r) ≠ 0. Unfortunately, harmonium is the only many-electron system
with a known exact wave function in a closed form, and realistic calculations of common
systems require approximate models.

Although true many-electron wave functions cannot be built from one-electron
functions (also called orbitals), such constructs form the basis of almost all approxi-
mate electron models. An antisymmetrized product of spin-orbitals, ϕ j(risi), is called
a Slater determinant,D({ϕ j}), and the approximate many-electron wave function thus
formed is characterized by a simple expression for the one-electron density matrix,
γ(r, r′) = ∑s∑ j f jϕ∗j (rs)ϕ j(r′s), in which f j ∈ {0, 1} are the occupation numbers of
the orbitals. (Generalizing from here, any N-representable density matrix can be ex-
pressed in this form by allowing any 0 ≤ f j ≤ 1.) Minimizing E[Ψ] with respect to this
Slater-type wave function is called the Hartree–Fock (HF) approximation. ¿e antisym-
metrization of same-spin electrons works on the spatial part of the wave function (Fig. 2.1),
and of opposite-spin electrons on the spin part. As a result of this, the pair correlation
function for opposite-spin electrons in a Slater determinant is equal to 1, whereas that of
the same-spin electrons is modi�ed (n↑ = n↓ = n/2 for simplicity),

д↑↑(r1, r2) = д↓↓(r1, r2) = 1 −
∣γ(r1, r2)∣2

n(r1)n(r2)
д↑↓(r1, r2) = 1 (2.13)

In line with the Pauli principle, the pair correlation function of same-spin electrons in
the HF model starts at zero when r1 equals r2, but then goes quickly to 1, around which it
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Figure 2.1 ∣Antisymmetrization. Contour plots of the square of awave function, ∣Ψ(x1 , x2)∣2, of
two particles in one dimension formed from two one-particle functions, φ1(x) = exp(−x2) and
φ2(x) = exp(−x2/2). On the left, Ψ is a simple product. On the right, Ψ is an antisymmetrized
product, φ1(x1)φ2(x2) − φ1(x2)φ2(x1). The contour levels in both plots are equal.
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slowly oscillates with decreasing amplitude as r12 increases. (In sodium, for instance, д
reaches 0.99 already at ∣r1 − r2∣ ≈ 0.25Å.)

¿e modi�cation of д from 1 due to the antisymmetry reduces the short-range repul-
sion between same-spin electrons, and this part of the nonclassical term in (2.11) is called
the exchange energy,

K[γ] = −
1
4 ∫∫ dr1dr2

∣γ(r1, r2)∣2

∣r1 − r2∣
(2.14)

When incorporated into the exact energy functional, the remaining part of the electronic
energy is called the correlation energy (despite the fact that the exchange energy also
originates from a nontrivial pair correlation function),

E[Ψ] = T[γ] + Vext[n] + J[n] + K[γ] + correlation (2.15)

Omitting the correlation part and minimizing this functional with respect to all N-
representable density matrices ( f j ∈ {0, 1} is obtained as a result) leads to the HF one-
electron equations, which describe the motion of an electron in the mean �eld generated
by all the other electrons (hence then name “mean-�eld”methods). Inmost molecules and
nonconducting solids, the basic structure of the ground-state wave function is dominated
by the kinetic energy, and the HF approximation works quite well in such cases, failing
only quantitatively to account for the opposite-spin correlation and the small Coulomb
correction to the same-spin correlation. Still, two fundamental problems exist: First, the
Coulomb interaction becomes as important as the kinetic energy for the wave-function
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structure² in metals, certain special materials (such as Mott insulators), and spin-unpaired
(open-shell) systems, and the missing opposite-spin correlation leads to qualitatively
wrong wave functions in such cases. For instance, it leads to spurious preference to
“cluster” same-spin electrons together, leading to the formation of unphysical spin waves
in metals in the HF approximation (Overhauser, 1962). Second, the long-range �ner
structure of the wave function is dominated by the Coulomb interaction, not by the
antisymmetry, leading to complete neglect of vdW interactions in the HF approximation.

Approximating the correlation energy as a functional of the one-electron density
matrix and minimizing that functional with respect to γ leads to the density-matrix
functional theory (of which the HF method is a special case). Going further, the post-
HF methods of quantum chemistry construct more complex wave functions on top of
the Slater determinant, and approximate the correlation energy either by reapplying the
variational technique or using the perturbation theory with the correlation term in the
functional being the perturbation. Using linear combinations of Slater determinants
instead of a single one leads to the class of multi-con�gurational methods.

2.4 Diàusion quantumMonte Carlo

¿e di�usion quantumMonte Carlo (DQMC) is a practical numerical method to calculate
the exact electronic ground-state energy that uses the mean-�eld wave functions of the
previous section only indirectly (Foulkes et al., 2001). Calculations performed for this
thesis use it indirectly via the parametrization of e�ective electron models introduced
below, as well as directly to calculate reference binding energies in Chapter 5.

DQMC is based on the fact that the imaginary-time evolution operator of (2.1) projects
out the true ground state in the limit of the in�nite time because the excited states have a
higher energy and decay faster,

exp(−τĤ)∣Ψ⟩ = ∑
n
exp(−τEn)∣ψn⟩

τ→∞
ÐÐ→ exp(−τE0)∣ψ0⟩ (2.16)

¿is fact becomes numerically useful by reinterpreting the corresponding wave function
as a distribution of particles and the evolution operator as describing a stochastic di�usion-
and-branching process of these particles. (In fact, this process can also be interpreted as a
stochastic gradient-descent minimization of the Hamiltonian expectation value, directly
connecting DQMC to the standard variational techniques (Schwarz et al., 2017).) ¿e
ground-state wave function and energy can then be obtained by stochastically evolving
the particles with exp(−τ(Ĥ−E)), while adjusting E such that the number of the particles
is kept constant, so that E eventually converges to E0. Ending the evolution process
before in�nite time gives the wave function and energy with some limited, but statistically

² More precisely, the functional derivatives of the Coulomb energy and the kinetic energy with respect
to the wave function become equally important.
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known and arbitrarily good accuracy. ¿e correspondence between the wave function
and the particle distribution is only valid when the wave function is positive everywhere.
¿is is true for the ground state of distinguishable or bosonic particles, but not for the
ground state of fermions (electrons), which must be antisymmetric (for more than one
particle). ¿is makes direct application of DQMC to electrons impractical without further
approximations.

¿e (3N − 1)-dimensional plane of points at which the wave function of N electrons
is zero is called the nodal surface. In general, it is no less complicated than the full wave
function, and the (3N − 3)-dimensional coincidence plane at which ri = r j and Ψ = 0 by
antisymmetry forms only its lower-dimensional sca�old (Ceperley, 1991). If the nodal
surface of the ground-state wave function was known, the full wave function could be
recovered by running a DQMC simulation independently in each nodal pocket, in which
the wave function does not change sign. ¿e �xed-node approximation then uses the
nodal surface of some approximate wave function to determine these independent DQMC
simulations. Because this e�ectively restricts the wave function to a certain form, the
obtained approximate ground-state energy is variationally guaranteed to be higher than
the true energy.

Modi�ed Slater-type wave functions obtained from mean-�eld methods (either HF
or KS-DFT, described below) are usually used to determine the nodal surface in the
�xed-node approximation. ¿e missing correlation (in the sense of a pair correlation
function) in the Slater determinant,D, due to the Coulomb interaction is added in an
ad-hoc way via the so-called Jastrow factor, J,

Ψ({risi}) = exp (J({risi}))D({risi})
J({risi}) = ∑

i
u1(risi) +∑

i< j
u2(risi , r js j) (2.17)

¿e two-electron Jastrow functions, u2, decrease the probability of two electrons coming
close to each other (di�erent for same- and opposite-spin electron pair), while the one-
electron functions, u1, restore the electron density ofD that would be otherwise somewhat
di�used by the two-electron Jastrow functions. ¿e particular forms of u1 and u2 are
mostly a result of experimentations and can be found for instance in (Foulkes et al., 2001).

2.5 Density-functional theory

¿e theoretical framework presented in this section has led to the most widely used
methods for calculating the electronic structure of molecules and materials, and it is the
lack of vdW interactions in its most popular approximations that renewed the theoretical
interest in vdW interactions. It provides the context, motivation, as well as essential tools
for most of the work in this thesis.
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One can try to go one step further from the density-matrix functional theory, and
express the electronic energy in terms of the electron density only, resulting in the density-
functional theory (DFT). ¿at this is in principle possible was shown by Hohenberg and
Kohn (1964) and later more rigorously by Levy (1979), who divided the minimization
in (2.7) over all antisymmetric wave functions in two steps, one over wave functions
with a given density, the other over all densities, thus establishing the Hohenberg–Kohn
functional, FHK,

E0 =min
Ψ

E[Ψ] =min
n
min
Ψ→n

E[Ψ] =min
n

(min
Ψ→n

(T[Ψ] + Vee[Ψ]) + Vext[n])

≡min
n

(FHK[n] + Vext[n]) ≡minn (E[n])
(2.18)

If a given input density of the Hohenberg–Kohn functional, FHK, is v-representable,
meaning that there is some external potential (other than Vext) of which ground state
has that density, then the minimizing wave function, ΨHK, is the ground state for the
corresponding external potential. For densities that are not v-representable, the HK
functional is still well-de�ned. In either case, one can de�ne the kinetic-energy functional,
T[n] ≡ T[ΨHK], and Vee[n] ≡ Vee[ΨHK]. ¿e task of DFT is then to devise su�ciently
accurate approximations to T[n] and Vee[n]. (¿e theory can be equivalently formulated
using the electron spin densities, n↑(r) and n↓(r), which gives a more useful framework
for approximations in the case of spin-polarized systems.)

Historically, the development of DFT was hampered by unsuccessful attempts at the
kinetic-energy functional, whose various approximate formulations explicitly in terms of
the electron density fail to reproduce any electronic shell structure in atoms. ¿is problem
was largely solved by Kohn and Sham (1965), KS, who approximated the true kinetic
energy with that of an auxiliary system of noninteracting electrons (Vee = 0) having the
same density as the actual system,

T[n] = T[ΨHK] = T[ argmin
Ψ→n

(T[Ψ] + Vee[Ψ])]

≈ T[ argmin
Ψ→n

T[Ψ]] =min
Ψ→n

T[Ψ] ≡ Ts[n]
(2.19)

¿e wave function minimizing Ts, Ψs, is always of the Slater type, and would in fact be a
ground state of the noninteracting system if it was put in a particular external potential,
called the KS potential,³

vs(r) = −
δTs[n]
δn(r)

(2.20)

A er the KS approximation, the remaining unknown terms are collected in the so-called
exchange–correlation (XC) functional (so named despite the contained kinetic-energy

³ More precisely, it would be a ground state only if the given density is noninteracting v-representable,
otherwise it would be an excited state.
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correction),

E[n] = Ts[n] + Vext[n] + J[n] + (T[n] − Ts[n] + Vee[n] − J[n])
≡ Ts[n] + Vext[n] + J[n] + Exc[n]

(2.21)

¿e aim of KS-DFT is then to search for approximate formulations of Exc expressed
explicitly in terms of the electron density.

Minimization of this functional with respect to N-representable densities leads to the
KS one-electron equations (another mean-�eld model, but unlike the HF model, exact
in principle), whose structure di�ers from the HF equations mathematically only in that
their e�ective mean-�eld potential is local rather than nonlocal,

vxc(r) = vext(r) +
δ(J[n] + Exc[n])

δn(r)

vHF(r, r′) = (vext(r) +
δJ[n]
δn(r)

) δ(r − r′) +
δK[γ]
δγ(r, r′)

(2.22)

¿is di�erence makes the KS equations somewhat less complex, and more e�cient to
solve numerically, which is one of the reasons for the popularity of KS-DFT over the HF
method. At the minimum of E[n], the e�ective-mean �eld potential of the KS equations,
vxc(r), is equal to the KS potential of the auxiliary noninteracting system, vs(r).

2.6 Adiabatic-connection æuctuation–dissipation theorem

¿is section introduces the starting point for the classi�cation of vdWmethods presented
in Chapter 3. ¿e auxiliary KS system of noninteracting electrons can be adiabatically
connected to the real system by slowly turning on the interelectronic Coulomb interaction,
λV̂ee , from λ = 0 to λ = 1, while keeping the electron density constant by adjusting the
Kohn–Sham potential.

FHK(λ)[n] =min
Ψ→n

(T[Ψ] + λVee[Ψ]) vs(r; λ) = −
δFHK(λ)[n]

δn(r)
E(λ)[n] = FHK(λ)[n] + Vs(λ)[n]

(2.23)

¿e standard HK functional and KS potential are recovered for λ = 1 and λ = 0, respec-
tively, whereas the Kohn–Sham potential for the true system reduces to the external
potential, Vs(1)[n] = Vext[n]. ¿e true electronic energy (λ = 1) can be obtained from the
noninteracting energy (Ts[n] + Vs[n]) by integrating over dE/dλ,

E(1)[n] = E(0)[n] + ∫ 1

0
dλ

dE(λ)[n]
dλ

(2.24)
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Because the process is adiabatic, the system is in the ground state at any point, so the HK
functional is stationary with respect to the wave function of the system (δFHK/δΨ = 0),
and the expression for dE/dλ reduces to a simple formula (this is also called theHellmann–
Feynman theorem),

dE(λ)[n]
dλ

=
∂FHK(λ)

∂λ
[ΨHK(λ)] +

δFHK(λ)[Ψ]

δΨ

RRRRRRRRRRRΨ=ΨHK(λ)

∂ΨHK(λ)
∂λ

+
dVs(λ)[n]

dλ

= Vee[ΨHK(λ)] +
dVs(λ)[n]

dλ

(2.25)

Inserting the derivative into (2.24), one gets an alternative expression for the electronic
energy that provides, by comparison to (2.21), an explicit formula for the XC energy (the
last term),

E(1)[n] = Ts[n] + Vs(0)[n] + ∫ 1

0
dλVee[ΨHK(λ)] + Vs(1)[n] − Vs(0)[n]

= Ts[n] + Vext[n] + J[n] − ∫ 1

0
dλ

1
2 ∫∫ dr1dr2

n(r1)n(r2) − n2(r1, r2; λ)
∣r1 − r2∣

(2.26)

¿e �uctuation–dissipation theorem is a deep result of (quantum) statistical physics
that relates correlations in �uctuations of any physical quantity describing a system in
equilibrium with the dissipative part of the nonequilibrium response of that quantity to an
external perturbation of the system (Callen andWelton, 1951). ¿e linear density response
function, χ, of an electronic system describes the change in the electron density at time t
generated by a change in the external potential at time t′ < t,

δn(r, t)
δvext(r′, t′)

= χ(r, r′, t − t′) (2.27)

It is o en more convenient to Fourier-transform the time to frequency, u,

δn(r, u)
δvext(r′, u)

= χ(r, r′, u) (2.28)

A particular version of the �uctuation–dissipation theorem for the �uctuations of the
electron density then enables one to express the electron-pair density, n2, in terms of the
density response. ¿is version of the theorem, at zero temperature, is expressed in terms
of the density operator, n̂(r) = ∑i δ(r − ri), (see Callen and Welton, 1951, eq. 4.8, Landau
and Lifschitz, 1980, eq. 124.10, Parr and Yang, 1989, eq. 8.6.2, and Kohn et al., 1998, eq. 8),

⟨Ψ∣(n̂(r1) − n(r1))(n̂(r2) − n(r2))∣Ψ⟩ = −
1
π ∫ ∞

0
du Im χ(r1, r2, u) (2.29)
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¿e electron-pair density can be likewise expressed in terms of the density operators,

n2(r1, r2) = ⟨Ψ∣n̂(r1)n̂(r2) − n̂(r1)δ(r1 − r2)∣Ψ⟩ (2.30)

With the help of following identity,

⟨Ψ∣(n̂(r1) − n(r1))(n̂(r2) − n(r2))∣Ψ⟩ = ⟨Ψ∣n̂(r1)n̂(r2)∣Ψ⟩ − n(r1)n(r2) (2.31)

one can �nally relate n2 and χ,

n(r1)n(r2) − n2(r1, r2) =
1
π ∫ ∞

0
du Im χ(r1, r2, u) + n(r1)δ(r1 − r2) (2.32)

In this equation, the le -hand side is �nite for r1 = r2, and the divergent second term
on the right-hand side is formally canceled by the divergence of the response function
at r1 = r2. Plugging this equation into (2.26), the XC energy is expressed in terms of the
density response function,

Exc[χ] = − ∫ 1

0
dλ

1
2 ∫∫ dr1dr2

1
π ∫

∞

0 du Im χ(r1, r2, u; λ) + n(r1)δ(r1 − r2)
∣r1 − r2∣

(2.33)

A standard form of the adiabatic-connection �uctuation–dissipation (ACFD) formula is
reached by introducing the Coulomb operator, v(R) ≡ 1/R, and using the Wick rotation,
∫∞0 du Im χ(u) = ∫∞0 duχ(iu), (see Landau and Lifschitz, 1980, eq. 123.20),

Exc[χ] = −
1
2π ∫ ∞

0
du ∫∫ dr1dr2 ∫ 1

0
dλ χ(r1, r2, iu; λ)v(∣r1 − r2∣) + Nv(0) (2.34)

Here, the density response outside the real axis is de�ned via analytic continuation, and
is guaranteed to be real on the imaginary axis, and decrease monotonically to zero with
growing iu. ¿e divergent second term, Nv(0), is formally canceled by the corresponding
divergence in the �rst term. Evaluation of the ACFD expression for the KS response func-
tion, χ(λ = 0), reduces to the HF-like expression for exchange, which can be subtracted
from the total XC energy to yield the remaining correlation part,

Ec[χ] = −
1
2π ∫ ∞

0
du ∫∫ dr1dr2 ∫ 1

0
dλ(χ(r1, r2, iu; λ)− χ(r1, r2, iu; 0))v(∣r1 − r2∣) (2.35)

2.7 Exchange–correlation functionals

¿e search for accurate approximations of the exact XC functional, Exc, has been the major
goal in DFT to this date, but the �rst and oldest approximation, which still serves as a basis
of all modern and more accurate approximations, was published in the same manuscript
as the KS-DFT framework itself. ¿e uniform electron gas (UEG) is an idealized system
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of electrons on an in�nite uniform background of positive charge, which is fully speci�ed
by the value of the (constant) electron density, n(r) ≡ n. ¿e exchange-energy density
(exchange energy per electron), εx, as de�ned by theHF approximation, was �rst calculated
for the UEG by Dirac (1930),

εUEGx (n) = −
3
4
(
3
π
)

1
3
n

1
3 (2.36)

¿e corresponding correlation-energy density, εc ≡ εxc−εx, is known to a very good degree
in a closed form from many-body perturbation theory (Chachiyo, 2016),

εUEGc (n) ≈
ln(2) − 1
2π2

ln(1 + 20.4563((
4π
3

)

1
3 n

1
3 + (

4π
3

)

2
3 n

2
3)) (2.37)

Alternatively, it can be calculated nearly exactly using DQMC (Ceperley and Alder, 1980),
for which �tted analytical forms exist (Perdew and Wang, 1992). ¿e local-density ap-
proximation (LDA) then assumes that the XC energy density of the UEG can be applied
locally at each point of a nonuniform system,

ELDAxc [n] = ∫ drn(r)εUEGxc (n(r)) (2.38)

¿e XC functionals can be also viewed as resulting from particular approximations to
the so-called XC hole, nxc,

nxc(r1, r2) = n(r1)(1 − д(r1, r2)) (2.39)

For a �xed electron at point r2, the XC hole represents the instantaneous missing density
of a single electron around r2, hence its name. ¿e XC energy can be expressed as the
Coulomb interaction of the electron density and the λ-averaged XC hole,

Exc = −
1
2 ∫∫ dr1dr2

n(r1) ∫ 10 dλ nxc(r1, r2; λ)
∣r1 − r2∣

= ∫ dr n(r) ∫ dr′
− ∫ 10 dλ nxc(r, r′; λ)

2∣r − r′∣
(2.40)

¿e LDA can then be understood as approximating the true XC hole of a system with that
of the UEG of the corresponding density at each point.

¿e electronic motion in the UEG with the density in the range of average densities
in molecules and solids consists of two major processes: the collective organized elec-
tronic �uctuations, called plasmons, and the individual motion of largely independent
quasi-electrons (abstractions of electrons that behave in many regards as electrons). ¿e
true electronic motion cannot be separated exactly in this way, but it is done so under the
so-called random-phase approximation (RPA) that neglects explicit interactions between
the collective and single-particle motions (Bohm and Pines, 1951; Pines and Bohm, 1952;
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Bohm and Pines, 1953). ¿is separation of motion also corresponds to a range separa-
tion of the Coulomb interaction, as in (3.3). Whereas the interactions of the individual
quasi-electrons are constrained to the short-range part of the potential, the plasmons
interact via the long-range part. Because LDA is exact for the UEG by construction,
it captures both the short-range and long-range part of the XC energy in uniform sys-
tems (that is, metals, in which the uniform regions of the electron density are formed
by the conducting electrons). But these two types of electronic motion are not equally
transferable to nonuniform systems. Whereas the character of short-range interactions
between quasi-electrons is relatively similar in most electronic systems, the collective
motion is completely determined by the particular arrangement of the atoms. For this
reason, the LDA captures in general relatively well the short-range part of the XC energy
in most systems, but completely misses the long-range part in nonuniform systems, which
comprise all real molecules and materials except metals.

¿e LDA estimates the local XC energy density only from the local value of the electron
density, and better approximations can be constructed using more detailed semilocal
information about the electronic system. In the generalized gradient approximation
(GGA), the XC energy functionals are constructed using also themagnitude of the gradient
of the density, ∣∇n(r)∣. ¿e KS kinetic energy, Ts[n], can be formally expressed as an
integral over the local kinetic-energy density, τs,

Ts[n] ≡ ∫ dr τs(r) (2.41)

¿is constraint does not uniquely de�ne τs. Two common de�nitions, one directly from
the kinetic-energy operator, the other expressed using only orbital gradients, are related
via the Laplacian of the density, ∇2n(r),

τIs(r) = −
1
2∑j

ϕ∗j (r)∇2ϕ j(r) τIIs (r) =
1
2∑j

∣∇ϕ j(r)∣2

τIs = τIIs − 1
4∇

2n(r)
(2.42)

von Weizsäcker (1935) formulated an approximate kinetic-energy density, τW, as a cor-
rection to the kinetic energy of the UEG for nonuniform electron densities, which is by
construction exact (on its own) for one-electron and spin-paired two-electron densities,

τW(r) = 1
8
∣∇n(r)∣2
n(r)

(2.43)

¿e spherically averaged electron-pair density, ⟨n2⟩Ω(r1, r12) = ∫ dΩ12n2(r, r12Ω12),
of the HF approximation can be to leading order in the electron–electron distance, r12,
expressed in terms of kinetic-energy densities (Becke and Edgecombe, 1990),

⟨n2⟩Ω(r, r12) = 1
3(τ

II
s (r) − τW(r))n(r)r212 + O(r312) (2.44)
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Because the electron-pair density is a fundamental quantity for the calculation of the XC
energy, this motivates the use of kinetic-energy densities and the related Laplacian in
formulations of approximate XC energy functionals, which leads to the so-called meta-
GGA functionals. ¿e smaller the electron-pair density is for small r12, the more localized
the electrons are, whichmotivates the de�nition of a function, α(r), expressing the relative
localization of electrons with respect to the UEG,

α(r) = τIIs (r) − τW(r)
τUEGs (n(r))

(2.45)

¿is electron-localization function is always positive, and tends to be small (large local-
ization) in the intra-shell regions of atoms and in the density tails (dominated by the
highest occupied orbital) and large in inter-shell and bonding regions (Sun et al., 2013).
¿e kinetic-energy densities enter many meta-GGA functionals in the form of α(r).

A generalized KS approximation can be formulated by relaxing the constraint that
the KS potential must be local. Such generalization then allows one to use the exchange
functional of the HF method as part of an XC functional, evaluated on the one-electron
orbitals of the noninteracting KS system, which are implicit functionals of the electron
density (via the KS kinetic functional). ¿ese so-called hybrid functionals proved useful
and in general more accurate than pure KS functionals with local KS potentials.

2.8 Time-dependent density-functional theory

¿e ACFD formula yields the exact XC energy given the exact response function of the
system, and time-dependent DFT provides a formally exact prescription how to calculate
the latter. Runge and Gross (1984) generalized the ground-state DFT for v-representable
densities to time-dependent external potentials by proving that themap from the potentials
to the densities is injective and hence invertible, establishing the time-dependent density
as a fundamental quantity of the theory. Within time-dependent KS-DFT, the primary
role is played not by the XC functional, which cannot be well de�ned, but by the time-
dependent XC potential, de�ned such that it yields the same time-dependent density for a
noninteracting system as the true external potential yields for the interacting system. ¿e
linear response of this XC potential to the changes in the density around the ground-state
density is called the XC kernel, fxc,

fxc(r, r′, u) =
δvxc[n](r, u)
δn(r′, u)

(2.46)

¿e time-independent XC potential is recovered as a restriction of the time-dependent one
to static densities, which makes time-dependent KS-DFT a harder theory to approximate
than ground-state DFT.
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¿e utility of the XC kernel comes from the expression for the density response
function of the λ-scaled interacting system in terms of the KS density response function
of the noninteracting auxiliary system of electrons (Gross and Kohn, 1985),

χ−1(r, r′, u; λ) = χ−1(r, r′, u; 0) − λv(∣r − r′∣) − fxc(r, r′, u; λ) (2.47)

¿eKS density response is known explicitly in terms of the KS one-electronwave functions
and their respective energies, εi , (Adler, 1962; Wiser, 1963),

χ(r, r′, u; 0) = ∑
i j

( fi − f j)
ϕ∗i (r)ϕi(r′)ϕ∗j (r)ϕ j(r′)

єi − є j + iu
(2.48)

2.9 Nonlocal dipole polarizability

¿e presentation above revolved around the density response function. ¿is section
presents a quantity that can serve as an equivalent alternative speci�cation of the response
properties of a system, but provides a better starting point for formulating approximate
models of the response, as discussed in Chapter 3.

¿e polarization of electronic matter under the in�uence of an additional external
electric �eld, E∆ = −∇v∆, (on top of that from the nuclei and electrons) can be expressed
by the change, in the electron density, ∆n, from the unpolarized state (E∆ = 0). In the
linear regime, this change is related to the corresponding potential, v∆, via the density
response function,

∆n(r, t) = ∫ dr′ ∫ t

−∞

dt′χ(r, r′, t − t′)v∆(r′, t′) (2.49)

∆n(r, u) = ∫ dr′χ(r, r′, u)v∆(r′, u) (2.50)

(A time-dependent electric �eld implies a nonzero magnetic �eld, but this is neglected in
the nonrelativistic treatment discussed here.) Alternatively, the polarization state can be
described by the polarization density, P, which can be interpreted as a dipole density, and
which gives the polarized charge density via divergence,

−∆n(r, u) = −∇ ⋅ P(r, u) (2.51)

Each vector �eld, such as P, can be decomposed into its longitudinal and transversal
component whose rotation and divergence are zero, respectively. Unlike ∆n (but like the
vector potential in classical electrodynamics), the polarization density is not observable,
and is not unique, because any other polarization density that di�ers only by a rotation of
some vector �eld will yield the same ∆n. However, its longitudinal component is unique,
and equal to −E∆∆/4π, the electric �eld generated by the polarization density, ∆n.
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¿e polarization density is related to the electric �eld via the (nonlocal) dipole polar-
izability, α, (Hunt, 1983),4

P(r, u) = − ∫ dr′α(r, r′, u)E∆(r′, u) (2.52)

In general, the response of the electron density is anisotropic, E∆ and P are not aligned,
and the polarizability must be a tensor. Like P, the nonlocal dipole polarizability is not
uniquely de�ned, but its longitudinal component is. ¿e relation between the density
response function and dipole polarizability is obtained by taking the divergence of (2.52),
using integration by parts,5 the de�nitions of E∆ and P, and comparing to (2.50),

χ(r, r′, u) = −∇ ⋅∇′ ⋅ α(r, r′, u)

= −∑
ιζ

∂2

∂rι∂r′ζ
αιζ(r, r′, u) (ι, ζ = x , y, z) (2.53)

¿e observable density response function depends only on the (unique) longitudinal
component of the dipole polarizability, and one can always �x the gauge of the polarizability
to be such that its transversal component is zero.

Whereas the electron density and the density response functions are coupled via the
Coulomb operator, the polarization density and dipole polarizability are coupled via the
dipole operator,

T(R) = ∇⊗∇′v(∣r − r′∣)∣r=R
r′=0

=
−3R⊗R + R2I

R5
(2.54)

For instance, the electrostatic Coulomb self-interaction of ∆n, which has the correspond-
ing P, can be expressed in two equivalent ways,

J[∆n] =
1
2 ∫∫ dr1dr∆n(r1)v(∣r1 − r2∣)∆n(r2)

=
1
2 ∫∫ dr1dr2 P(r1) ⋅ T(r1 − r2)P(r2)

(2.55)

4 ¿e following common notation is used for vectors from any vector space. ¿e application of a linear
map (tensor), M, to a vector, v, omits parentheses, M(v) ≡ Mv, and composition of tensors likewise,
M(O(v)) ≡ (MO)v ≡ MOv. Speci�cally for the Euclidean space, vectors and tensors are typeset in bold,
and the inner and tensor (outer) products are denoted with “⋅” and “⊗”, respectively, (u⊗ v)w ≡ (v ⋅w)u.

5 For a scalar �eld, ϕ(r), and a vector �eld, A(r),

∫V drA(r) ⋅∇ϕ(r) = ∫∮∂V dr∇ ⋅ (A(r)ϕ(r)) − ∫V dr(∇ ⋅A(r))ϕ(r)
When V is the whole space, and A(r)ϕ(r) goes to zero when r goes to in�nity,

∫ drA(r) ⋅∇ϕ(r) = − ∫ dr(∇ ⋅A(r))ϕ(r)
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¿e total polarizability of a system, αtot, that relates its total induced dipole moment
to a perturbing uniform �eld, E(u), is recovered by integrating over both arguments of
the nonlocal polarizability,

∫ drP(r, u) = ( ∫∫ drdr′ α(r, r′, u))E(u)

= αtotE(u)
(2.56)

2.10 Periodic potentials and reciprocal space

¿e relevant physical information in quantum mechanics is encoded in operators on the
appropriate Hilbert space (Fock space if change in number of particles is considered),
which can be expressed in whichever basis is the most convenient for a particular calcu-
lation. ¿is section presents a class of bases that are best suited for systems where the
external potential has a full or discrete translational symmetry. Such systems correspond
to perfect crystals, but are also good models or starting point for subsequent improved
treatments of imperfect crystals or nonperiodic systems a er applying arti�cial periodic
boundary condition.

As can be the time domain of response functions Fourier-transformed into the fre-
quency domain, so can be the real space Fourier-transformed into the reciprocal space,

f (k) = ∫ dr f (r)e−ik⋅r (2.57)

While the frequency domain directly exposes the time-translational symmetry of station-
ary states, the reciprocal space exposes the space-translational symmetry (periodicity)
in crystals. ¿e Fourier transformation of any Bravais lattice, {R}, is the corresponding
reciprocal lattice, {G}. ¿e spectrum of a crystal-periodic function, f , such as the electron
density, is discrete, and is conventionally de�ned by normalizing to the unit-cell (UC)
volume, ΩUC,

f (k) = (2π)3ΩUC∑
G
δ(k −G)

1
ΩUC

∫UC dr n(r)e−iG⋅r
≡ (2π)3ΩUC∑

G
δ(k −G) fG

(2.58)

For a two-point function, A, such as the response function, the sign in the exponential of
the Fourier transformation is conventionally inverted for the second argument. Because a
two-point function related to a crystal is periodic only in both of its arguments at the same
time, its spectrum is partially discrete, partially continuous, and any two wave vectors, k,
k′, for which its spectrum is nonzero, can be written in terms of two reciprocal unit-cell
vectors, G, G′, and a single wave vector from the �rst Brillouin zone, q,

AGG′(q) =
1

ΩUC
∫UC dr ∫ dr′A(r, r′)e−iG⋅reiG′⋅r′e−iq⋅(r−r′) (2.59)
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¿e Fourier transformation reduces inner-product real-space integrals into reciprocal-
space in�nite sums,

A(r, r′) = ∫ dr′′B(r, r′′)C(r′′, r) ⇔ AGG′(q) = ∑
G′′
BGG′′(q)CG′′G′(q) (2.60)

Because larger G correspond to ever more rapid changes in real space, a reasonable
approximation can be made by neglecting G above some threshold, and making the
q-dependent matrices �nite. Such a truncation of the Fourier transformation corresponds
to perhaps the simplest �nite one-electron basis for periodic external potentials that can
be reasonably e�cient when actually used to numerically solve HF or KS equations. Since
the functions corresponding to a given G are plane waves, e−iG⋅r, the computer programs
that calculate the electronic structure of crystals in this way are usually referred to as
plane-wave codes.

¿ere is no reasonable cuto� when the functions being transformed are discrete, say,
over atoms positions, Ri , A(r, r′) = ∑RR′∑i j δ(r −R −Ri)δ(r′ −R′ −R j)AR+Ri ,R′+R j . (R,
R′ are lattice vectors.) In such case, it is convenient to de�ne the Fourier transformation
of the individual discrete points,

AGG′(q) =
1

ΩUC
∑
i
∑
R j
ARi ,R+R je

−iG⋅RieiG′⋅R je−iq⋅(Ri−R−R j)

=
1

ΩUC
∑
i j

(∑
R
ARi ,R+R je

−iq⋅(Ri−R−R j))e−iG⋅RieiG′⋅R j

≡
1

ΩUC
∑
i j
Ai j(q)e−iG⋅RieiG

′⋅R j

(2.61)

¿is naturally reduces reciprocal-space in�nite sums into real-space �nite sums,

AGG′(q) = ∑
G′′
BGG′′(q)CG′′G′(q) ⇔ Ai j(q) = ∑

k
Bik(q)Ck j(q) (2.62)

2.10.1 Dielectric function from dipole polarizability

¿eprevious sections introduced twoways to specify the response properties of amaterial—
the density response function and the nonlocal dipole polarizability. Both of them are
useful theoretical constructs, but none of them is directly measurable in solids in a
practical way. In molecules, the total polarizability can be measured and compared
to theoretical predictions, but this quantity is extensive and hence not very useful for
describing macroscopic material samples. ¿is disadvantage is resolved by yet another
response, the (scalar) microscopic dielectric function, є, which has a directly measurable
macroscopic limit.
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¿e dielectric function relates the change in the total electric potential (including the
�eld from the electrons), ∆vtot, to that in the external potential,

∆vtot(r, u) = ∫ dr′є−1(r, r′, u)v∆(r′, u) (2.63)

It can be expressed in terms of the density response function,

є−1(r, r′, u) = δ(∣r − r′∣) + ∫ dr′′v(∣r − r′′∣)χ(r′′, r′, u)

⇕

є−1GG′(q, u) = δGG′ +∑
G′′
vGG′′(q)χG′′G′(q, u)

= δGG′ + v(∣G + q∣)χGG′(q, u)

(2.64)

¿e (tensor) macroscopic dielectric function, єM, relates the macroscopic total electric
�eld to the macroscopic external electric �eld,

E(u) = є−1M(u)Eext(u) (2.65)

¿e macroscopic dielectric function can be obtained from the microscopic one by taking
the latter’s long-wavelength limit,

q̂ ⋅ єM(u)q̂ = lim
q→0

1
є−100(q, u)

(2.66)

¿is limit depends on the direction from which zero is approached, which is the mecha-
nism by which a microscopic scalar quantity becomes a macroscopic tensor quantity.

2.10.2 Ewald summation of dipole interaction

¿is section presents a reciprocal-space numerical technique that will be used in Chapter 4
to speed up calculations of vdW energies. ¿e Fourier transformations of the discrete
samples of the Coulomb and dipole operators, v and T, are in�nite real-space sums that
converge slowly, hindering numerical evaluation,

Ti j(q) = ∑
R
TRi ,R+R je

−iq⋅(Ri−R−R j) = ∑
R
T(Ri −R −R j)e−iq⋅(Ri−R−R j) (2.67)

Ewald (1921) summation is a technique that splits such a sum in two parts, one of which
converges quickly in the real space, and the other in the reciprocal space. ¿e split is
governed by a single parameter, α > 0, which balances the rate of convergence of the two
components. In the case of the dipole operator for general q (Bowden and Clark, 1981),
the resulting expression consists of three terms,
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Ti j(q) = ∑
R
TEw,sr(Ri −R −R j; α)e−iq⋅(Ri−R−R j)

+
1

ΩUC
∑
G
TEw,lr(G + q; α)e−iG⋅(Ri−R j) − δi j

4α3

3
√
π
I (2.68)

where

TEw,sr(d; α) =
−3d⊗ dB1(αd) + d2IB2(αd)

d5
TEw,lr(k; α) = 4π

k ⊗ k
k2

exp( −
k2

4α2
)

(2.69)
B1(x) = erfc(x) + 2

π x(1 +
2
3x

2 exp(−x2)) B2(x) = erfc(x) + 2
π x exp(−x

2) (2.70)

¿e �rst term is a real-space sum of the short-ranged part, while the other two combined
are a reciprocal-space sum of the long-ranged part.

¿e long-ranged part is not de�ned for k = G + q = 0, and neither has an analytical
limit there. ¿is corresponds to the fact that the dipole sum is not absolutely convergent
for q = 0, which in turn corresponds to the physical fact that the electrostatic energy of
a macroscopic sample of a dipole crystal, described by a polarization density (eq. 2.55),
depends on the shape of the crystal sample. ¿is ambiguity disappears when one studies
only di�erences between to states of such a crystal, because the shape-dependent terms
cancel out. A particular choice for the limit of TEw,lr(k) when k goes to zero corresponds
to a particular choice of the shape, and a common choice is a sphere,

lim
k→0

TEw,lr(k; α) =
4π
3
I (2.71)



Chapter 3

Long-range electron correlation

This chapter presents a review of the state of the art of microscopic models of van
der Waals interactions that have been applied beyond simple toy models and have
a basis in the adiabatic-connection æuctuation–dissipation (ACFD) formula for the
exchange-correlation energy. While the reviewed methods are all prior works of other
authors, the uniäed range-separation formalism based on the nonlocal polarizability,
formal classiäcation along the diàerent approximations to the ACFD formula, and
several re-derivations of existing methods are novel. Most of the original and derived
results in this chapter have been published in (Hermann et al., 2017b).

3.1 Range separation of electron correlation

¿e vdW force between atomic bodies held together by covalent, ionic, or metallic binding
is always caused by the long-range electron correlation, but not all e�ects of the long-
range correlation are considered to be a vdW force. In metals, the electrons from the
nonconducting bands are localized on atoms, which form nonuniform islands in the sea
of approximately uniform electron density of the conducting electrons (Tao et al., 2010).
Here, the long-range correlation between the conducting electrons contributes to the
metallic binding. In nonmetals, however, all electrons are nonconducting, the electron
density is nowhere uniform, and long-range correlation is mostly associated with vdW
interactions.

¿e electronic structure within a single uniform subsystem di�ers qualitatively in
many aspects from that in a nonuniform system. In a uniform system, the exchange
e�ects, the KS density response function, and the XC kernel decay only algebraically
with distance (they are long-ranged) as a result of the conducting electrons, whereas
they decay exponentially (they are short-ranged) in nonuniform systems (Ge and Lu,
2015). (¿e true density response function decays algebraically in both cases because
of electron correlation.) Correspondingly, semilocal and hybrid XC functionals capture
both short-range and long-range part of the XC energy in uniform systems, but only

29
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the short-range part in the nonuniform systems. ¿e vdW interactions can be therefore
associated with all long-range electron correlation except for that between conducting
electrons within a single uniform subsystem, which is fortunately covered by semilocal
and hybrid density functionals. ¿e nonuniform situations include interactions between
conducting electrons in disjoint metallic bodies, interactions of conducting electrons
with localized electrons, either in the same metallic body, or in other bodies, as well as all
interactions between localized electrons.

¿e XC energy can be formally divided into a short-range (sr) and long-range (lr)
part via the ACFD formula in (2.34) by separating the double spatial integral into two
parts using a range-separating function, f , which should decay at least exponentially fast,

∫∫ dr1dr2 = ∫∫ dr1dr2(1 − f (r1, r2)) + ∫∫ dr1dr2 f (r1, r2) ≡ ∫∫sr dr1dr2 + ∫∫lr dr1dr2
f (r, r) = 0 f (r, r +R) = 1 − O(exp(−R))

(3.1)
Considering the range-separating function to be a functional of the density, f ≡ f [n], it
can be in principle always constructed exactly for a given short-range (or long-range) part.
¿e short-range part of the ACFD expression accounts for short-range density �uctuations
interacting via the short-range part of the Coulomb operator, while the long-range part
accounts for long-range �uctuations interacting via the long-range Coulomb operator.
¿e statements above about the XC energy in uniform and nonuniform systems can then
be summarized in the following way,

uniform:

Exc

nonuniform:

=

semilocal/hybrid
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Ex,sr + Ec,sr
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
semilocal/hybrid

+ Ex,lr
´¸¶
≈0

+ Ec,lr
´¸¶
vdW

(3.2)

Of course, such a range separation is exact only in principle, because the association of a
given XC functional with a particular range-separating function is unknown.

With the caveat about the uniform systems, the vdW interactions can then be associ-
ated with the long-range XC energy,

Exc,lr = −
1
2π ∫ ∞

0
du ∫∫ dr1dr2 ∫ 1

0
dλ χ(r1, r2, iu; λ)vlr(r1, r2)

vlr(r, r′) = f (r, r′)v(∣r − r′∣)
(3.3)

In this setup, care must be taken about the potential double counting of the long-range
XC energy in uniform systems from the semilocal or hybrid functionals and from the
long-range ACFD formula. ¿is double-counting does not matter in situations when the
result of a calculation is an energy di�erence, such as when calculating the adsorption
energy of a molecule on a metal surface. But it may pose a problem in other cases, for
instance when investigating a lattice expansion of a metal.
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¿e TD-DFT Dyson-like equation for the density response function in (2.47) can be
e�ectively range-separated by introducing some long-range e�ective Coulomb operator,
ve�, grouping the XC kernel (short-ranged in nonuniform systems) and the corresponding
short-range Coulomb operator, v − ve�, and averaging the resulting e�ective density
response function, χe�, over λ,

χ−1(r, r′, u; λ) = χ−1(r, r′, u; 0) − fxc(r, r′, u; λ) − λ(v(∣r − r′∣) − ve�(r, r′)) − λve�(r, r′)
≈ χ−1e�(r, r′, u) − λve�(r, r′)

(3.4)
Interpreting the response functions as tensors on the vector space of spatial functions,
and using the shorthand multiplication notation for tensor composition, the full density
response function can be expressed explicitly,

∫ 10 dλχ(u; λ) = ∫ 10 dλ(χe�(u) + χe�(u)λve�χ(u; λ))
= ∫ 10 dλ(χe�(u) + χe�(u)λve�χe�(u) + χe�(u)λve�χe�(u)λve�χ(u; λ))

=
∞

∑
n=0

( ∫ 10 dλ λn)χe�(u)(ve�χe�(u))
n

=
∞

∑
n=0

1
n + 1

(χe�(u)ve�)
n+1v−1e�

= ln (1 − χe�(u)ve�)v−1e�
(3.5)

¿e e�ective density response function, de�ned in this way, is guaranteed to be short-
ranged in nonuniform systems. ¿e equivalent expressions can be written for the nonlocal
dipole polarizability.

Plugging this expression to the long-range ACFD formula then gives the long-range
XC energy in terms of the e�ective density response function and the two long-ranged
Coulomb operators, ve� and vlr,

Exc,lr = −
1
2π ∫ ∞

0
du ∫∫ dr1dr2[ ln (1 − χe�(u)ve�)v−1e�vlr](r1, r2)

≡ −
1
2π ∫ ∞

0
duTrr ( ln (1 − χe�(u)ve�)v−1e�vlr)

(3.6)

¿e e�ective range of vlr is governed by the complementary range of the method for the
short-range XC energy (typically a semilocal XC functional), whereas the range of ve� is
controlled by the range of the model for the e�ective density response, discussed below.

3.1.1 Static correlation

In metals, strongly correlated materials, and spin-unpaired systems, the Coulomb interac-
tion between electrons becomes at least as determining for the basic structure of the wave
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function as the kinetic energy. ¿is leads to the general failure of mean-�eld models such
as the HF and semilocal KS-DFT approximations, except for metals and KS-DFT, in which
the LDA-based XC functionals capture the electron correlation within uniform electron
density e�ectively. In spin-unpaired (open-shell) systems, this e�ect is o en called static
or le –right correlation. Spin-unpaired systems typically result from breaking chemical
bonds and separating the resulting fragments. In such cases, a mean-�eld method can
describe well the spin-paired unbroken system, but fails for the spin-unpaired separated
fragments. ¿is might suggest that static correlation should be a part of the long-range
correlation energy.

But consider the case of dissociating a hydrogen molecule in the (singlet) ground state
into two hydrogen atoms. ¿e system of two separated atoms has zero total spin, and
if one electron is measured on the le atom with some spin, the other will be certainly
on the right atom because of Coulomb repulsion, and it will have the opposite spin. ¿e
quantum states of the two hydrogen atoms are entangled, making them really a single
quantum system, albeit noninteracting. In a mean-�eld method, the probabilities of
�nding opposite-spin electrons at some points are uncorrelated, and there is 50% chance
that both electrons will be located on the same atom. ¿is underlying issue manifests
di�erently in the HF and KS schemes. In the HF approximation, themissing opposite-spin
correlation in the wave function results in a spurious on-site repulsion. In KS-DFT, on the
other hand, the lack of correlation in the KS ground state is an expected part of the theory,
resulting in two hydrogen atoms with mixed spin densities. Current XC functionals
then fail by giving a di�erent XC energy for such mixed-spin hydrogen atoms than for
a pure-spin hydrogen atom. ¿is demonstrates that the problem of static correlation in
DFT is in fact a local problem that can be formulated on a single isolated hydrogen atom.
Alternatively, one can argue that the Coulomb operator in the ACFD formula goes to zero
at large distances, whereas the static correlation persists at all distances, so it must be the
short-range (on-site) structure of the (spin) density response function that determines the
correct XC energy in systems with static correlation. In any case, static correlation is part
of the short-range XC energy, and the long-range correlation energy is indeed responsible
solely for vdW interactions (except in uniform systems).

¿at being said, the incorrect treatment of static correlation can have a large e�ect on
the response properties of the electronic system, and so the long-range correlation energy
as well. For instance, minimization of the total electronic energy with respect to semilocal
and hybrid density functionals (which are incapable of treating static correlation) leads
to electron densities that are far too di�use and polarizable, which yields overestimated
vdW interactions. ¿is issue, however, is present already in the isolated systems, and is
independent of the long-range interaction between them.
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3.2 Local eàective polarizability

¿is section argues that the formulation of the ACFD formula in terms of the nonlocal
polarizability is a better starting point for developing approximate models than the for-
mulation in terms of the density response function. Expressing χ in terms of α, using the
same integration-by-parts technique as when deriving the relationship between χ and α
in (2.53), and transferring the divergence operators on the Coulomb operator, the ACFD
formula can be cast in terms of the nonlocal dipole polarizability,

Exc,lr[α] =
1
2π ∫ ∞

0
du ∫∫ dr1dr2 ∫ 1

0
dλ α(r1, r2, iu; λ)Tlr(r1, r2)

Tlr(r, r′) = ∇⊗∇′vlr(r, r′)
(3.7)

Following the same procedure as with the density response function, this can be recast in
terms of the e�ective polarizability,

Exc,lr =
1
2π ∫ ∞

0
duTrr ( ln (1 + αe�(u)Te�)T−1e�Tlr) (3.8)

¿ere are three reasons why the e�ective-polarizability version of the ACFD formula
turns out to be a good starting point for approximate models. First, models of αe� can
e�ectively capture all short-range XC e�ects, which modify the magnitude of the bare KS
polarizability, without accounting for these e�ects explicitly via the Dyson equation. Sec-
ond, such models do not need to represent the short-range structure of the polarizability
correctly, because it interacts only via the long-range dipole operators. ¿ird, the density
response function has a complex nodal structure, as it describes depletion of the electron
density at some points and its accumulation elsewhere. In contrast, the corresponding
polarizability is a rotation-free smooth vector �eld that encodes that underlying nodal
structure implicitly in terms of its local behavior via the divergence operators in (2.53).
¿is is true even in the case of a long-ranged nonlocal density response function that is
characteristic of uniform systems. ¿erefore, the strength of the response is translated
directly into the magnitude of the polarizability, whereas it is translated only indirectly
into the magnitude of the gradient of the density response function.

For illustration, consider two one-dimensional (1D) Gaussian charge densities located
at ±1 (crude model of atoms), and two model density response functions, one local, χloc,
the other nonlocal, χnlc, (Figure 3.1),

χnlc(x , x′) = −(e−(x+1)
2
− e−(x−1)2)(e−(x′+1)2 − e−(x′−1)2)

χloc(x , x′) = −(x + 1)e−(x+1)
2
(x′ + 1)e−(x′+1)2 − (x − 1)e−(x−1)2(x′ − 1)e−(x′−1)2

(3.9)

In one dimension, the dipole polarizability is a scalar, and uniquely determined by inte-
grating over the density response function,

α1D(x , x′) = ∫ x

−∞

dy ∫ x′

−∞

dy′χ1D(y, y′) (3.10)
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Figure 3.1 ∣ Density response function vs. dipole polarizability. Contour plots of model one-
dimensional nonlocal (left) and local (right) responses encoded as the density response func-
tion (top), χ(x , y), and the dipole polarizability (bottom), α(x , y), deäned in (3.9). The red and
blue colors correspond to positive and negative values. The red lines denote the positions of
the two responding Gaussian charge densities on the x-axis.
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Even in these trivial models, the density response function changes sign around atoms,
and has a nontrivial nodal structure, whereas the polarizability is positive everywhere.
Furthermore, the nonlocal density response translates into a polarizability that is still
localized, but over a larger region spanning both atoms. ¿ese observations are crucial
for multipole expansions of both χ and α discussed below.

¿e localized nature of the dipole polarizability combined with the insensitivity of the
long-range ACFD formula to the short-range structure of the e�ective polarizability hints
at the possibility of a relatively accurate local representation of αe�, formally obtained by
integrating over some neighborhood,M(r), around each point, r,

αe�(r, r′, u) ≈ δ(∣r − r′∣) ∫M(r)
dr′′αe�(r, r′′, u) ≡ δ(∣r − r′∣)αe�(r, u) (3.11)

Since αe�(r, u) depends on the properties of the system only in the near neighborhood of r,
good semilocal approximations to it can be constructed using local quantities such as the
electron density, its gradient, or the KS kinetic energy density, in a similar manner that the
hierarchy of semilocal XC functionals is built. In nonuniform systems, the polarizability
is localized only algebraically, the e�ective neighborhoods would need to be larger, and
correspondingly, the range separation of the Dyson-like equation would need to be shi ed
towards larger separations. On the other hand, in the case of a vdW interaction between
a metal and a nonmetal, the long-range nonlocal electronic �uctuations in the former
do not have any long-range counterpart in the latter, preventing any correlation on such
length scales, and only relatively short-range �uctuations in the metal contribute to the
vdW attraction. For this reason, the local e�ective polarizability can e�ectively capture
the true response even in such cases.

3.2.1 Harmonic oscillator as a polarizability model

¿e frequency dependence of the imaginary part of the density response function or dipole
polarizability encodes the full optical (electromagnetic) spectrum. ¿is is equivalent to
knowing the full energy spectrum of the corresponding Hamiltonian, which is a much
harder problem than calculating the ground-state energy. Accordingly, the ACFD formula
contains the polarizability under the integral sign over all frequencies, and it is su�cient
to model the spectrum only such that its sum-total is represented accurately. ¿is is done
conveniently by modeling directly the imaginary-axis dependence of the polarizability,
αe�(r, iu), which is a real-valued monotonically decreasing function, and must decay
quadratically in the high-frequency limit. ¿ese conditions are satis�ed by a simple
rational function (the simplest Padé approximant), speci�ed by two parameters, α(0) and
ω,

αe�(r, iu) ≈
αe�(r, 0)
1 + u2

ω(r)2
(3.12)
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¿e interpretation of this formula is provided by a charged harmonic oscillator, for which
it is the exact result.

Consider a particle with a charge, q, and mass, m, in a harmonic potential, vext(r) =
mω2/2, and under a dissipative force, −mζdr/dt (Lorentz oscillator). ¿e total polariz-
ability of such a system can be expressed in a closed form,

αLOtot (u; ζ) =
q2/m

ω2 − u2 + iζu
(3.13)

¿e electronic Hamiltonian without any interaction with the environment is nondissipa-
tive, and the corresponding oscillator model is recovered at the limit of ζ → 0,

lim
ζ→0

αLOtot (u; ζ) =
q2/m
ω2 − u2

+
π
2
q2

mω
δ(u − ω)

αLOtot (iu; 0) =
q2/mω2

1 + u2/ω2

(3.14)

¿e same result is obtained using either a classical or quantum treatment.

3.3 Classiäcation of vdWmethods

Most existing models of long-range correlation can be described in terms of various
approximations to the range-separated e�ective-polarizability version of the ACFD for-
mula in (3.8). One of them is the already discussed local representation of the e�ective
polarizability. Two other general and common approximations are spatial coarse-graining
of the system and truncation of the in�nite logarithm series, ln(1 − x) = ∑n=1 xn/n. ¿e
two types of approximations are illustrated in Figure 3.2.

3.3.1 Coarse-graining of continuous quantities

Given a set of functions, wp(r), that partition a space into fragments,∑pwp(r) ≡ 1, and
respective centers of the fragments, Rp, each spatial function or operator, such as the
dipole polarizability, can be represented as a sum over the partitioned components, αpq,
which can be in turn expanded in the basis of solid harmonics (multipole expansion),
αpq,l l ′mm′ , around the centers (Stone, 2013),

α(r, r′, u) = ∑
pq
wp(r)wq(r′)α(r, r′, u) ≡ ∑

pq
αpq(r, r′, u) → αpq,l l ′mm′ (3.15)

(Here, l , l ′ start from 1, because the expanded quantity is a tensor. ¿e corresponding
expansion of the scalar density response fucntion, χ, would start from l = l ′ = 0.) ¿e
dipole potential is expanded correspondingly. Unlike the Fourier transformation, the
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Figure 3.2 ∣ Coarse-graining and many-body expansion. Diàerent kinds of approximations
to the adiabatic-connection æuctuation–dissipation formula for the long-range exchange–
correlation energy are shown on the ball-and-sticks model of the benzene dimer. (a) Legend
for the graphical representation of polarizabilities, α, and dipole operators, T. The clouds
around the eàective polarizability represent its eàective spatial extent. (b) The random-phase
approximation is an ab-initio many-body method without coarse-graining that approximates
the true coupling of the bare Kohn–Sham polarizability with a bare dipole operator. The long-
range part of the XC energy is formed by terms in which at least one of the dipole operators is
long-ranged. The red and orange colors denote second- and third-order terms, respectively.
(c) Nonlocal density functionals are second-order eàective models without coarse-graining.
The polarizability is approximated locally. (d) Many-body dispersion is a coarse-grained atomic
model.

a b

c dc
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multipole expansion is not invertible, but like the Fourier transformation, it introduces a
correspondence between spatial integrals and in�nite sums,

P(r, u) = − ∫ dr′α(r, r′, u)E(r′, u) ⇔ Pp,lm(u) = − ∑
q,l ′m′

αpq,l l ′mm′(u)Eq,l ′m′ (3.16)

¿e sums can be made implicit by arranging the multipole moments in vectors and
matrices,

α =
⎛
⎜
⎝

αpp αpQ ⋯

αQp αQQ ⋯

⋮ ⋮ ⋱

⎞
⎟
⎠

αpp =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α11,11xx α11,11xy α11,11xz α12,11xx ⋯

α11,11yx α11,11yy α11,11yz α12,11yx ⋯

α11,11zx α11,11zy α11,11zz α12,11zx ⋯

α21,11xx α21,11xy α21,11xz α22,11xx ⋯

⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3.17)

Under this notation, the long-range ACFD formula in (3.8) has exactly the same form,
but the operators are in�nite matrices instead of nonlocal functions, and the trace is not
over space, but over the fragments and multipole moments,

Exc,lr =
1
2π ∫ ∞

0
duTrp,lm ( ln (1 + αe�(u)Te�)T−1e�Tlr) (3.18)

¿e motivation for this multipole reformulation is that because both Te� and Tlr are
long-ranged and their moments decay increasingly faster for higher l ’s, all the matrix
multiplications (in�nite sums) converge quickly and can be approximated well by �nite
sums.

¿e feasibility of the coarse-graining and multipole expansions is dictated by the
choice of the fragments and the response properties of the system. In a nonuniform
system, the nonlocal e�ective polarizability is exponentially localized on atoms, and
atom-centered fragments are a natural basis of a quickly converging multipole expansion.
In a uniform system, the e�ective polarizability is long-ranged, di�used, and there are
no natural centers for the multipole expansion, leading to large higher moments and
slow convergence or even divergence of the expansion. In principle, this problem is
mitigated in combination with the KS-DFT, because the long-range XC energy within
the uniform systems is captured by the semilocal or hybrid functional, and the multipole
convergence of the correlation energy due to interaction with a separate uniform or
nonuniform system is helped by larger separations between the fragments. But such an
interplay is not well understood, and none of the coarse-grained models reviewed in
this chapter take advantage of this cancellation. In general, the complex interaction of
the delocalized response of metals and localized response of nonmetals (insulators or
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molecules) is one of the hardest problems for general approximate models of the long-
range electron correlation. It has been treated in select systems by e�ective parametrization
of the metallic response from experimental measurements of the dielectric function (Ruiz
et al., 2012), but the lack of any general e�cient model still hinders modeling of hybrid
material interfaces.

3.3.2 Truncation of many-body expansion

¿e operator logarithm in (3.8) is de�ned as an in�nite series, and writing it out explicitly
in terms of individual orders leads to a many-body decomposition of the XC energy,

Exc,lr = 1
2π ∫

∞

0 duTr (αe�(u)Tlr) − 1
4π ∫

∞

0 duTr (αe�(u)Te�αe�(u)Tlr)
+ 1

6π ∫
∞

0 duTr (αe�(u)Te�αe�(u)Te�αe�(u)Tlr) − . . . (3.19)

¿e name “many-body” is best motivated in the coarse-grained models where the individ-
ual terms correspond to interactions between increasing number of fragments (bodies).
(¿e order does not necessarily correspond to the number of bodies. At fourth order,
for instance, some terms are a back-and-forth interaction between two bodies.) When
constructed from the bare KS polarizability, the �rst termwould evaluate to the long-range
part of the exact exchange (plus higher-order exchange screening), which is negligible
in nonuniform systems but can be relevant in uniform systems (where it would be typ-
ically covered by a semilocal XC functional). With any local approximation for the
e�ective polarizability, the �rst term evaluates exactly to zero. ¿e second term is the
leading term for vdW interactions and the basis of all nonlocal correlation functionals
and coarse-grained pairwise methods reviewed below. ¿e third term corresponds to the
Axilrod–Teller–Muto (ATM) three-body potential (Axilrod and Teller, 1943; Mutō, 1943)
when coarse-grained to atoms.

When the αe�Te� term in the logarithm is small enough, the series converges quickly,
and the logarithm can be approximated well by a truncated expansion. While this is
usually not the case for the total long-range XC energy of a system, Te� is o en small
enough between the interacting subsystems, and if one is interested only in the interaction
energy, the series can be o en truncated already a er the second order, because the higher-
order terms cancel out. However, this is not the case in general, especially in strongly
polarizable systems, or in lower-dimensional systems where αe�Te� is highly anisotropic.
¿e degree of approximation made by truncating the in�nite logarithm series is di�cult
to assess a priori, and Chapter 5 shows an example of a system where the higher-order
terms contribute substantially to interaction energies.

3.3.3 Kohn–Sham response and random-phase approximation

¿e approximations to the ACFD formula that are full many-body and not coarse-grained
can be based based on the bare KS response. Because the KS density response function
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can be calculated directly from the KS orbitals (eq. 2.48), these approximations are usually
formulated and evaluated in the χv-representation rather than the αT-representation.
Furthermore, because the bare response has a well-de�ned short-range structure, this
construction allows the evaluation of the total XC energy, not only its long-range part, so
the use of these methods goes far beyond long-range correlation energy. Here, however,
we discuss the methods mostly from the perspective of vdW interactions.

¿e simplest of these methods is the RPA, which translates into zero XC kernel in
the formalism of the ACFD formula and TD-DFT (Ren et al., 2012). ¿is corresponds to
setting the e�ective polarizability to the bare KS polarizability, and the e�ective dipole
operator to the full dipole operator,

ERPAc =
1
2π ∫ ∞

0
duTrr ( ln (1 + α(u; λ = 0)T) − α(u; λ = 0)) (3.20)

In the χv-representation, the expression can be evaluated straightforwardly using the
explicit expression for χ(u; λ = 0) (Furche, 2001).

¿e omitted XC kernel is short-ranged in nonuniform systems, but its omission
in�uences both short-range and long-range correlation energy, because the short-range
XC e�ects in the polarizability eventually couple via the long-range dipole operator in
the ACFD formula. As a result, although RPA does not su�er from any systematic errors
in the long-range correlation energies, the overall accuracy is o en worse than that of
the many e�ective models reviewed below (Olsen and¿ygesen, 2013b). ¿is is further
ampli�ed in vdW systems in equilibrium geometries, where the short-range XC energy
also contributes to the total interaction energy. Attempts at improvement go both ways,
replacing the short-range correlation energy with a better model than RPA, as well as
improving the e�ective polarizability.

Kurth and Perdew (1999) suggested to correct the short-range correlation energy from
RPA with that from a semilocal XC functional, in what they called the RPA+ method.
Rather than explicitly range-separating the ACFD expression, RPA+ removes the RPA
short-range part by subtracting correlation energy from a specially designed semilocal cor-
relation functional, EGGA@RPAc , and reintroduces it back with standard semilocal functional,
EGGAc .

ERPA+c = ERPAc − EGGA@RPAc + EGGAc (3.21)
EGGA@RPAc is constructed in a similar way as standard functionals, but its uniform part
is parameterized to reproduce the RPA energy of the electron gas rather than the true
energy. In a later version, this was re�ned so that also the gradient correction satis�ed
the short-range behavior of RPA (Yan et al., 2000). RPA+ attempts to �x the short-range
correlation energy of RPA, but the long-range part is unchanged, so the vdW force remains
the same, and it is only the interaction due to electron-density overlap, which occurs at
equilibrium, that can be possibly improved. Furthermore, the range separation in RPA+
is unsystematic in the sense that there is no guarantee that EGGA@RPAc and EGGAc have the
same e�ective range.
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(Toulouse et al., 2004) formulated a range-separated version of the KS scheme, in
which the XC functional is designed from the beginning to treat only the short-range
part of the electron correlation. ¿is leads to an alternative range separation of the ACFD
formula, in which α(λ) is not the polarizability of the wave function that minimizes
⟨Ψ∣T̂ + λV̂ ∣Ψ⟩, but rather of one that minimizes ⟨Ψ∣T̂ + λV̂lr∣Ψ⟩ (Toulouse et al., 2009).
In this scheme, the RPA of the Dyson-like equation results in a model in which the
e�ective polarizability is still equal to the bare KS polarizability, like in normal RPA, but
the e�ective dipole operator is only the long-range part of the full operator. ¿e underlying
assumption then is that the dipole operator and the XC kernel partially cancel out at short
range, giving a di�erent estimate of the e�ective polarizability than normal RPA. ¿is is
supported by numerical evidence on select small systems. A similar scheme, proposed
earlier by Kohn et al. (1998), also uses a range-separated version of the KS scheme, but
instead of obtaining the true polarizability at the RPA level, χ(λ) is obtained for each λ
by explicitly perturbing the corresponding λ-scaled system with electric �eld.

A straightforward way to improve the RPA is to devise approximate XC kernels, which
improves the short-range behavior of the polarizability, and hence both short-range and
long-range correlation energies. Extending the LDA to the time domain, the adiabatic LDA
(ALDA) assumes that the XC kernel has no memory, leading to a frequency-independent
local XC kernel,

f ALDAxc (r, r′, t − t′) = δ(t − t′) δ2ELDAxc [n]
δn(r)δn(r′)

= δ(t − t′)δ(r − r′)
d2(nεUEGxc (n))

dn2
∣
n=n(r′)

f ALDAxc (r, r′, u) = δ(r − r′)
d2(nεUEGxc (n))

dn2
∣
n=n(r′)

(3.22)
Unlike LDA, which is exact for the uniform electron gas (UEG), ALDA does not give
the true XC kernel of the UEG (which is nonlocal in both time and space), and violates
several known properties of the true XC kernel. Despite that, it is a useful approximation
in TD-DFT calculations when one is interested only in a certain range of the frequency
spectra. Still, it turns out not to be a good approximation in the ACFD formula, where it
give worse results than the absent XC kernel of the RPA (Lein et al., 2000).

Olsen and ¿ygesen (2012) constructed a correction to ALDA by �xing its large-q
(short-range) behavior in the UEG to better reproduce the known exact behavior. Taking
this renormalized ALDA (rALDA) kernel, transforming back to real space and using the
mean density in two points as the corresponding uniform density, this procedure gives a
universal XC kernel,

f rALDAxc (r, r′, u) = f UEGxc (∣r − r′∣; n = 1
2(n(r) + n(r

′))) (3.23)

¿is construction is computationally no more demanding that RPA, but improves upon
RPA in almost every case tested (Olsen and¿ygesen, 2013a, 2014). ¿e rALDA XC kernel
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gives a more realistic short-range screening of the bare KS polarizability, resulting in more
accurate long-range correlation energies and better description of vdW systems.

A di�erent path towards improving the accuracy of RPA can be taken using the many-
body perturbation (MBPT) theory. ¿is is possible because, as Gell-Mann and Brueckner
(1957) showed, yet another equivalent de�nition of RPA is via a certain subset of Feynman
diagrams, the so-called ring diagrams. Summing di�erent subsets of the diagrams similar
to those corresponding to RPA then leads to di�erent RPA-like models and sometimes
confusing terminology, when a certain modi�cation of the XC kernel in RPA is equivalent
to adding additional terms to the RPA XC energy that do not seem to be related to RPA
(Scuseria et al., 2008; Jansen et al., 2010; Ángyán et al., 2011).

¿e second-order Møller–Plesset correlation energy (MP2) consists of the Coulomb
direct and exchange terms, of which only the former is long-ranged. In this context, RPA
can be understood as the sum of all MP2-like direct terms (ring diagrams) in the in�nite
MBPT expansion. Similarly, the MP2 exchange can be renormalized by replacing one of
the Coulomb interactions with the RPA sequence of ring diagrams, leading to the second-
order screen exchange (SOSEX). Furthermore, unlike in the Møller–Plesset perturbation
theory, where the �rst order is guaranteed to be zero, single-electron excitations contribute
to the XC energy in the MBPT based on KS orbitals. Combining RPA, SOSEX and
RPA-renormalized single-excitation correction then results in the renormalized second-
order perturbation theory (rPT2) (Ren et al., 2011, 2013). Although the MP2 exchange
term is short-ranged, the renormalization in SOSEX is long-ranged, and the long-range
correlation energy of rPT2 is di�erent from that of RPA. ¿e combined improvements of
the short-range and long-range XC energy in rPT2 compared to RPA lead to improved
accuracy in vdW binding energies.

3.3.4 Nonlocal density functionals

¿emodels of long-range correlation energy reviewed in this section are in the class of
approximations to the ACFD formula that truncate the many-body expansion at second
order, but do not do any spatial coarse-graining. ¿is leads to XC functionals that are
characterized by nonlocal dependence of the XC energy density on the electron density
via some nonlocal kernel, Φ,

Enl-dfc,lr =
1
2 ∫ drdr′n(r)n(r′)Φ[n](r, r′) = ∫ dr n(r) ∫ dr′ 12n(r

′)Φ[n](r, r′) (3.24)

¿e derivation of (3.24) from the ACFD formula for the XC energy starts with trun-
cating the logarithm expansion at second order,

Exc,lr ≈
1
2π ∫ ∞

0
duTrr,R3 (αe�(u)Tlr − 1

2αe�(u)Te�αe�(u)Tlr) (3.25)
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Here, TrR3 denotes the trace over the three Cartesian vector components. In the next step,
the e�ective polarizability is approximated with a local isotropic polarizability,

αe�(r, r′, u) ≈ Iαe�(r, u)δ(r − r′) (3.26)

¿is results in the �rst-order term being zero, which means that such a functional cannot
capture any exchange energy, which is intentional, since the nonlocal functionals are
designed to capture only the long-range correlation energy. ¿e locality of the e�ective
polarizabilities reduces two of the four integrals in the second-order term, and the isotropy
allows to take the polarizabilities out of the trace,

Ec,lr ≈ −
1
4π ∫ ∞

0
du ∫∫ drdr′ TrR3 (αe�(r, u)Te�(r, r′)αe�(r′, u)Tlr(r′, r))

= −
1
4π ∫ ∞

0
du ∫∫ drdr′αe�(r, u)αe�(r′, u)TrR3 ( − Te�(r, r′)Tlr(r, r′))

(3.27)

Both Te� and Tlr go to the bare dipole operator for large distances, and the trace can be
rewritten in terms of a range-separating function, f ,

TrR3 ( − Te�(r, r′)Tlr(r, r′)) ≡ f (r, r′) 6
∣r − r′∣6

(3.28)

¿is is the origin of the 1/R6 dependence of the pairwise vdW force.
A general form of the local e�ective polarizability used in many models is obtained

from the polarizability of a harmonic oscillator by setting the ratio of the charge and mass
to that of an electron, q/m = 1, and substituting the electron density for the charge,

αHOtot (iu) =
q2/m
ω2 + u2

Ð→ αe�[n](r, iu) =
n(r)

ω2
e�[n](r) + u2

(3.29)

Besides the obvious reason of modeling electrons, the charge–mass ratio of one is mo-
tivated by the f -sum rule for an electronic system that dictates that αtot(iu) → N/u2
(N is the number of electrons), which the form above automatically satis�es. (Strictly
speaking, this is not necessary, because the rule does not need to be satis�ed in any local
form, and furthermore, the local e�ective polarizability is not supposed to integrate to
the total polarizability without any long-range coupling. However, the local form is a
straightforward way to satisfy the global rule.) ¿e local e�ective resonance frequency,
ω2
e�, can be in general any functional of the electron density, but is o en approximated

locally.
Combining (3.29), (3.28), and (3.27), the approximated ACFD formula can be recast

in the form of a nonlocal density functional, where the nonlocal kernel is a functional of
the e�ective resonance frequency and the (unspeci�ed) range-separating function,

Ec,lr ≈
1
2 ∫∫ drdr′ n(r)n(r′)(− 3

π ∫ ∞

0
du

1
ω2[n](r) + u2

1
ω2[n](r′) + u2

f (r, r′)
∣r − r′∣6

) (3.30)
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¿e asymptotic behavior of the long-range correlation energy calculated in this way is
fully speci�ed by ωe�.

¿e �rst general functional of this form, referred to simply as the vdW density func-
tional (vdW-DF), was developed by Dion et al. (2004) as a culmination of a program
set up by Andersson, Langreth, and Lundqvist (1996). ¿e program was followed along
a di�erent branch by Hult et al. (1996, 1999), but this e�ort did not result in a general
functional of only the electron density. Although the derivation of the vdW-DF starts
from the ACFD formula, it follows quite a di�erent direction than the framework in this
chapter, and most of the approximations along the way are done in reciprocal space, until
everything is transformed back to real space in the end. However, the �nal result can still
be cast in the form of (3.30).

¿e e�ective resonance frequency in the vdW-DF is constructed from a GGA-type
XC energy density,

ω2
vdW-DF[n](r) = 4π2εvdW-DF

xc [n]4 = 4π2 (εUEGxc (n) + A ∣
∇n
n

7
6
∣
2
)

4

(3.31)

¿e �rst equality is motivated by using ω2
e� to calculate the XC energy of a slowly varying

electron gas via the ACFD formula. ¿e particular choice of the semilocal approximation
to the XC energy density is rather arbitrary and completely independent of the semilocal
functional potentially used to complete the vdW-DF at short range. ¿e value of the numer-
ical parameter A can be derived in di�erent ways using di�erent �rst-principles arguments,
leading to substantially di�erent values and results for vdW binding energies (Lee et al.,
2010).

A serious disadvantage of the vdW-DF in light of other long-range correlation models
is that its range-separating function is �xed by the underlying theory. Because of the con-
struction in the reciprocal space, the parameter A appears both in the e�ective resonance
frequency and the range-separating function. Since the asymptotic behavior of any nonlo-
cal functional depends only on ωe�, not the range-separating function, the parameter A is
essentially �xed, and there is no remaining freedom in the range-separating function that
could be adjusted for a particular choice of a short-range semilocal functional in a full
KS-DFT calculation.

¿e form of the range-separating function is complex due to the reciprocal-space
formulation, but there are two underlying physical motivations for it. When the two
oscillators given by the resonance frequencies ωe� are close to each other such that their
ground-state wave functions would overlap, the underlyingmodel does not work anymore,
the corresponding part of the XC energy must be covered by the semilocal functional,
and the dipole coupling must be damped. ¿is is e�ectively achieved by increasing the
resonance frequency as k2 in the reciprocal space. ¿e second damping mechanism is that
the nonlocal functional must evaluate to zero for the uniform electron gas, whose long-
range correlation energy is already covered by a semilocal or a hybrid functional. ¿is
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forces the range-separating function to negative values at short range, to counterbalance
the attractive contribution from the long range.

¿e complex form of the vdW-DFwas gradually simpli�ed byVydrov andVanVoorhis.
In the vdW-DF-09 (Vydrov and Van Voorhis, 2009), the range-separating mechanism
was constructed independently of the e�ective resonance, making the nonlocal functional
adaptable to any semilocal or hybrid functional, which also resulted in improved accuracy
for vdW binding energies. Furthermore, the local resonance frequency was somewhat
modi�ed,

ω2
vdW-DF-09[n](r) = (4π)2

43π2

36
´¸¶
≐0.87

(εUEGx (n) + B ∣
∇n
n

7
6
∣
2
)

4

(3.32)

Further simpli�cation was achieved in the VV09 functional, which used a substantially
di�erent form of ωe�,

ω2
VV09[n](r) =

4π
3
n(r) + C ∣∇n∣4

n4
(3.33)

Here, 4πn is the resonance frequency of the macroscopic (small-q limit) plasmon �uctua-
tions of the uniform electron gas. ¿e factor of 1/3 comes from the Clausius–Mossotti
relation between the microscopic local polarizability and the macroscopic dielectric
function. ¿e density-gradient term is a local model of a band gap obtained from con-
sidering the behavior of the electron density in the density tail of a �nite system. ¿e
range-separating mechanism of VV09 is still constructed in reciprocal space.

¿e �nal attempt at a simpli�ed formulation of the vdW-DF, named VV10, was con-
structed entirely in real space (Vydrov and Van Voorhis, 2010). Both the resonance
frequency and range-separating function of (3.30) have a simple form in VV10. ¿e
former is the same as in VV09, and the latter is constructed using the same mechanism of
reduced polarizabilities of overlapped oscillators as in the original vdW-DF, but in real
space,

fVV10(r, r′) =
αe�(r, iu;ω = ωVV09 + Dn

1
3 /∣r − r′∣2)αe�(r′, iu;ω = ωVV09 + Dn

1
3 /∣r − r′∣2)

αe�(r′, iu;ω = ωVV09)αe�(r′, iu;ω = ωVV09)
(3.34)

As 1/∣r − r′∣2 grows at short distances, the e�ective resonance frequency of the local
oscillators increases, reducing their polarizability. ¿e parameter D is used to adjust the
range of this mechanism.

3.3.5 Pairwise interatomic models

¿eoldest approaches to �x themissing long-range electron correlation inHF or semilocal
KS-DFT calculations are of the interatomic pairwise form,

Ec,lr ≈ −
1
2∑pq

C6,pq
f (Rp,Rq)

∣Rp −Rq∣
6 (3.35)
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Here, f is some range-separating (damping) function, Rq are the atom coordinates, and
the so-called dispersion coe�cients, C6,pq, determine the asymptotic interaction between
two atoms. ¿is type of interatomic potential has origin in empirical force �elds dating
back to the Lennard–Jones potential, even before it was clear that the correct leading
term of the vdW force is 1/R6. In the context of electronic-structure methods, it was �rst
used by Hepburn et al. (1975) to correct interaction curves of rare-gas dimers from HF
calculations. ¿is approach was later extended to molecules and KS-DFT calculations,
and the C6 coe�cients were extended to a wider range of systems (Halgren, 1992; Mooij
et al., 1999; Elstner et al., 2001; Wu and Yang, 2002). Grimme (2004) then presented a
parametrization of C6 and f , termed DFT-D (‘D’ for dispersion), that could in principle
be applied to any molecule or solid, in combination with any XC functional. ¿is marked
a start of routine addition of the long-range correlation energy to semilocal KS-DFT
calculations.

¿epairwise interatomicmodel of (3.35) can be obtained as a coarse-grained truncated
approximation to the ACFD formula. ¿e derivation follows the same course of second-
order truncation and local approximation to the e�ective polarizability as nonlocal vdW
XC functionals, but starting from the coarse-grained multipole-expanded ACFD formula
in (3.18),

Ec,lr ≈
1
4π ∫ ∞

0
duTrp,lm (αe�(iu)Te�αe�(iu)Tlr) (3.36)

Here, the trace is over multipole moments and fragments, which are chosen to be atoms
in most cases. (In this context, the formal de�nition of an atom in a molecule is given
by some partition function.) Approximating the local e�ective polarizability as isotropic,
αe�,pl l ′mm′ = δl l ′δmm′αe�,pl , the formula is reduced as in the case of nonlocal vdW XC
functionals,

Ec,lr ≈
1
4π ∫ ∞

0
du∑

pq
∑
l l ′
αe�,pl(iu)αe�,ql ′(iu)[Trm(Te�Tlr)]pq,l l ′

= −
1
2∑pq
∑
l l ′

(
Kl l ′

2π ∫ ∞

0
du αe�,pl(iu)αe�,ql ′(iu))

fl l ′(Rp,Rq)

∣Rp −Rq∣
2+2l+2l ′

≡ −
1
2∑pq
∑
l l ′
C2+2l+2l ′ ,pq

fl l ′(Rp,Rq)

∣Rp −Rq∣
2+2l+2l ′

(3.37)

Kl l ′ = lim
R→∞

∑m Tl l ′mm(R)
∣R∣2+2l+2l ′

(3.38)

¿e standard pairwise formula of (3.35) is recovered by keeping only the lowest dipole–
dipole term (l = l ′ = 1, K11 = 6), where the expression for the corresponding dispersion
coe�cient is called the Casimir–Polder integral,

C6,pq =
3
π ∫ ∞

0
du αe�,p1(iu)αe�,q1(iu) (3.39)
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Some pairwise methods are formulated directly in terms of the dispersion coe�cients,
not the underlying polarizabilities, in which case approximate combination rules for
calculating unknown heteronuclear coe�cients from known homonuclear coe�cients
are useful. Such rules can be derived from the Casimir–Polder integral using some model
polarizability. An o en used rule is obtained from the harmonic-oscillator model,

CHO
6,pq =

3
π ∫ ∞

0
du

αp(0)ω2
p

ω2
p + u2

αq(0)ω2
q

ω2
q + u2

=
3αp(0)αq(0)ωpωq

2(ωp + ωq)

=
2C6,ppC6,qq

C6,pp
αq(0)
αp(0) + C6,qq

αp(0)
αq(0)

(3.40)

Using the single-pole polarizability of the harmonic oscillator in situations where the true
spectrum is more complex, such as in the equation above, is called the Unsöld (1927)
approximation.

¿e models of Grimme are di�erent from the rest reviewed in this section in that they
are formulated only in terms of the geometry of a molecule, {Rp}, not the electron den-
sity. ¿is makes them straightforwardly useful even for empirical short-range electronic
models that do not produce any electronic density, but at the same time, it makes it much
harder to achieve truly general models, because the electron density encodes much useful
information about the system.

¿e �rst version of DFT-D used �xed homonuclear C6 coe�cients, the combination
of (3.40) with all polarizability ratios set to 1, and a range-separating function constructed
from vdW radii that did not go to 1 in in�nity (Grimme, 2004). ¿e second version was
a numerical reparametrization of the �rst one with a changed combination rule, which
set the polarizability ratios equal to those of the C6 coe�cients (Grimme, 2006). In the
�rst and second version, the atomic C6 coe�cients do not depend on the molecular
environment, which is a crude approximation. ¿e third version was an improvement
in several regards (Grimme et al., 2010). ¿e range separation was modi�ed to obey the
correct asymptotic behavior. An elementary dependence of the C6 coe�cients on the
environment was included via geometrical factors estimating the coordination number
of an atom. ¿e dipole–quadrupole term (l = 1, l ′ = 2) from (3.37) was included, and a
three-atom correction was suggested, which is the third-order triple-dipole term in the
logarithm expansion of the coarse-grained ACFD formula. ¿e corresponding dispersion
coe�cients, C8 and C9, are obtained by combination rules similar to those for the C6
coe�cient.

Soon a er the �rst version of DFT-D and in stark contrast to it, Becke and Johnson
(2005b) developed a method to calculate C6 coe�cients from �rst principles, using an
approximation to the polarizability based on the dipole moment of the XC hole of the
HF model, the exchange-hold dipole method (XDM). ¿eir initial derivation was rather
heuristic, with a wrong prefactor, but the �nal result can be in fact obtained directly from
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the Casimir–Polder integral using the �uctuation–dissipation theorem for the density
response function of (2.32) and the Unsöld approximation:

C6 =
3
π ∫ ∞

0
duαtot(iu)2 ≈

3
π ∫ ∞

0
du (

αtot(0)
1 + u2/ω2)

2

=
3
4
αtot(0)2ω

= 1
2αtot(0)

3
π ∫ ∞

0
du

αtot(0)
1 + u2/ω2 =

1
2αtot(0)

3
π ∫ ∞

0
duαtot(iu)

= 1
2αtot(0)

1
π ∫ ∞

0
duTrR3 (αtot(iu))

= 1
2αtot(0)

1
π ∫ ∞

0
du ∫∫ drdr′ TrR3 (α(r, r′, iu))

= 1
2αtot(0) ∫∫ drdr′ TrR3 ( − r⊗ r′ 1π ∫

∞

0 χ(r, r′, iu))

= 1
2αtot(0) ∫∫ drdr′ r ⋅ r′n(r)(nxc(r, r′) + δ(r − r′))

= 1
2αtot(0) ∫ dr (rn(r) ⋅ ∫ dr′ r′(nxc(r, r′) + δ(r − r′)))

≡ 1
2αtot(0) ∫ dr dn(r) ⋅ dxc(r)

(3.41)

Here, the C6 coe�cient is expressed in terms of the static polarizability and the correlation
between the local dipole moment of the total density and of the XC hole with its reference
electron. ¿is expression provides accurate C6 coe�cients when provided with accurate
correlated XC holes, but fails short of good accuracy when evaluated with the approximate
XC hole from theHFmodel (Ángyán, 2007). ¿e XDMuses a slightly modi�ed expression
that autocorrelates the XC hole dipole moment,

C6 ≈
1
2αtot(0) ∫ dr dxc(r) ⋅ dxc(r) (3.42)

¿is version works remarkably well with the HF XC hole, but the reasons for this unex-
pected accuracy are not well understood (Ángyán, 2007; Heßelmann, 2009; Ayers, 2009).
A semilocal approximation to the XC hole by Becke and Roussel (1989) works as well
as that from the HF model, and with the additional bene�t of reduced computational
complexity (Becke and Johnson, 2005a).

To formulate a general interatomic pairwise method, the dipole moment of the XC
hole is coarse-grained using the partitioning scheme devised by Hirshfeld (1977). In
this scheme, the atomic partition functions, wp, are constructed from radially averaged
electron densities of isolated atoms, nfree,

wHirsh
p (r) =

nfreep (∣r −Rp∣)

∑q nfreeq (∣r −Rq∣)
(3.43)
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¿e corresponding static dipole polarizabilities of the atomic fragments are calculated
from free-atom dipole polarizabilities, assuming that they scale linearly with the Hirshfeld
measure of a volume (Hirshfeld volume),

αp1(0) = αfreep1 (0)
VHirsh
p [n]

VHirsh
p [nfree]

(3.44)

VHirsh
p [n] = ∫ dr n(r)wHirsh

p (r)∣r −Rp∣
3 (3.45)

¿e fragment C6 coe�cients are then calculated from the fragment polarizabilities and
coarse-grained XC hole dipole moment,

CXDM
6,pp = 1

2αp1(0) ∫ drwp(r)dxc(r) ⋅ dxc(r) (3.46)

¿e harmonic-oscillator combination rule is used to get the rest of the C6 coe�cients. ¿e
XDM can be extended to higher-multipole dispersion coe�cients by calculating higher
multipole moments of the XC hole polarization around each atomic center (Becke and
Johnson, 2006; Johnson and Becke, 2006).

¿e XDM dispersion coe�cients were paired with two distinct empirical suggestions
for the range-separating function, one based on the ratio of approximate short-range and
long-range correlation energies, the other on the vdW radii (Becke and Johnson, 2007),

f XDM1
11 (Rp,Rq) = (1 + A(

C6,pq/∣Rp −Rq∣
6

Efreec,p + Efreec,q
))

−1

(3.47)

f XDM2
11 (Rp,Rq) =

⎛

⎝
1 + A(

RvdW,p + RvdW,q + B
∣Rp −Rq∣

)

6
⎞

⎠

−1

(3.48)

Here, Efreec,p is the correlation energy of a free atom calculated with some semilocal correla-
tion functional.

A simple yet accurate interatomic pairwise method was developed by Tkatchenko
and Sche�er (2009) (TS), who extended the free-atom scaling approach to all the atomic
parameters, including the C6 coe�cients and the vdW radii, and thus formulating the
calculation of interatomic pairwise vdW interactions into a true density functional. As-
suming that the excitation energies of the atoms are independent of the volume, the
Unsöld approximation and the Casimir–Polder integral dictate that the C6 coe�cients
scale with the second power of the Hirshfeld volume ratio,

C6,pq = Cfree
6,pq (

VHirsh
p [n]

VHirsh
p [nfree]

)

2

(3.49)

¿e free-atom reference values may not be the most e�ective choice in metals and some
solids, whose electron density is o en substantially di�erent from the superposition of
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free-atom densities. Zhang et al. (2011) and Ruiz et al. (2012) used an adapted TS method,
where the reference values are obtained from bulk macroscopic dielectric constant. ¿e
TS method uses a logistic function as a range-separating function, with the free-atom
vdW radii naturally scaled by the cubic root of the Hirshfeld-volume ratio,

f TS11 (Rp,Rq) = (1 + exp [−A(B
∣Rp −Rq∣

Rvdw,p + Rvdw,q
− 1)])

−1

(3.50)

Sato and Nakai (2009, 2010) developed an atomic pairwise method based on the
local e�ective polarizability functional from the vdW-DF-09 nonlocal functional. ¿eir
local response dispersion (LRD) method is an explicit realization of the coarse-graining
approach outlined in Section 3.3.1. A system is described by the local e�ective polarizability
given by the harmonic-oscillator formula with the resonance frequency from (3.32). ¿e
atomic fragments are de�ned using the partitioning functions from the scheme by Becke
(1988), which is most o en used to de�ne atomic radial grids in KS-DFT calculations, but
here it is used as an alternative to the Hirshfeld partitioning. ¿e partitioned polarizability
is used to calculate a coarse-grained representation of the system via multipole expansion
and Casimir–Polder integrals up to the C10 coe�cient. ¿e LRD method uses yet another
range-separating function, parametrized by the polarizabilities in place of the vdW radii,

f LRD11 (Rp,Rq) = exp
⎛
⎜
⎝
−
⎛

⎝

∣Rp −Rq∣

A( 3
√αe�,p + 3

√αe�,q) + B
⎞

⎠

6
⎞
⎟
⎠

(3.51)

Silvestrelli (2008) formulated a pairwise method in which the coarse-grained frag-
ments are not atoms, but Wannier functions (WFs) (Marzari et al., 2012). Wannier
functions are any set of localized one-electron wave functions that in principle form a
complete basis. In �nite molecular systems, they are called Boys orbitals. ¿eWannier
functions of conducting and nonconducting electrons are localized algebraically and
exponentially, respectively. In the vdW-WF method, each WF is approximated with a
single spherically symmetric exponential function that has the same width (second central
moment) as the true WF. ¿e polarizability of the approximate WF is calculated with the
polarizability functional of Andersson, Langreth, and Lundqvist (1996) (ALL),

αe�,p(iu) = ∫r∈ΩA

dr
np(r)

4πnp(r) + u2
, ΩA = {r ∶ ∣∇np(r)∣ < knp(r)

7
6 } (3.52)

Here, np is the electron density of the WF and k is a nonempirical constant. ¿e C6
coe�cients between the WFs are calculated from the Casimir–Polder integral, and the
range-separating function is the same as in the TS method, with vdW radii of the WFs
de�ned via an electron density cuto� (Silvestrelli et al., 2009). ¿e vdW-WF scheme
has two theoretical shortcomings: �rst, the partitioning of the total electron density
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is only approximate because of the use of the approximate WFs, and second, the ALL
polarizability functional was designed for the total electron density, not one-electron
densities.

Coarse-grained methods in which the fragment polarizabilities and C6 coe�cients
are calculated directly, rather than obtained by explicit partitioning of some continuous
quantity, may be sensitive to a particular choice of the partitioning scheme. ¿is moti-
vated a series of modi�ed Hirshfeld partitioning schemes that should capture better the
redistribution of the electron density in a molecule with respect to free atoms. Steinmann
and Corminboeuf (2010, 2011) adapted the XDM to use the self-consistent Hirshfeld
scheme, which gives a more consistent description of ionic systems (Bultinck et al., 2007).
Bučko et al. (2013, 2014) did the same with the TS method. ¿e self-consistent Hirshfeld
partitioning uses the same stockholder formula in (3.43) as the original scheme, but the
reference densities are generalized and depend recursively on the partitioning, leading
to equations that need to be solved iteratively (Verstraelen et al., 2012). A common form
of the generalized reference densities, used in the modi�ed XDM and TS methods, is a
linear combination of free-atom and free-ion densities that maintains the charge of the
Hirshfeld-partitioned atomic density. ¿is scheme is complicated by the instability of
many isolated anions, which requires addition of auxiliary negative charges, making the
partitioning somewhat arbitrary.

3.3.6 Many-body dispersion framework

¿e fourth and �nal class of approximations to the ACFD formula covers nontruncated
coarse-grained models. A common theme of all such models is to interpret the Unsöld
approximation with its single resonance frequency literally, and model a real molecular
system as a collection of coupled charged oscillators. ¿e corresponding Hamiltonian
describes a system of distinguishable particles characterized by a charge, qi , and a mass,
mi , each having its own harmonic potential de�ned by the resonance frequency, ωi , and
a center, Ri , interacting via the Coulomb force,

Ĥosc = ∑
i

p̂2i
2
+∑

i

1
2
miω2

i ∣r̂i −Ri ∣
2

+∑
i< j
qiq j (

1
∣r̂i − r̂ j∣

−
1

∣r̂i −R j∣
−

1
∣Ri − r̂ j∣

+
1

∣Ri −R j∣
) (3.53)

¿e centers of the harmonic potentials additionally host a compensating charge of the
opposite sign. If the centers are the same as those of the atoms, this Hamiltonian can be
interpreted as a very crude approximation to the electronic Hamiltonian, in which all
electrons of individual atoms are described by distinguishable psuedoelectrons that move
in an e�ective potential which is the combined result of the nuclear potential and the
mean �eld of the electrons. In particular, any exchange e�ects and hence charge transfer
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and delocalization are scrapped. Expanding the Coulomb operator in a multipole series
and keeping only the dipole term results in dipole-coupled oscillator Hamiltonian,

Ĥdosc = ∑
i

p̂2i
2
+∑

i

1
2
miω2

i ∣r̂i −Ri ∣
2 +∑

i< j
qiq j(r̂i −Ri)T(R j −Ri)(r̂ j −R j) (3.54)

A useful property of this Hamiltonian is that it can be solved exactly by coordinate
transformation. Introducing mass-scaled coordinates, ξ̂i =

√
mi(r̂i −Ri), ξ̂ = (ξ̂1 ξ̂2 . . .),

using the expression for the polarizability of a charged harmonic oscillator in (3.13), and the
fact that the kinetic-energy operator is invariant with respect to unitary transformations,
the dipole-coupled Hamiltonian can be transformed into uncoupled quasi oscillators,

Ĥdosc = ∑
i

p̂2i
2
+∑

i

1
2
ω2
i ξ̂

2
i +

1
2∑i j

ωiω j

√

αi(0)α j(0)ξ̂iTi j ξ̂ j

≡ ∑
i

p̂2i
2
+
1
2
ξ̂Q(α(0),ω,T)ξ̂

= ∑
i

p̂′2i
2
+
1
2
ξ̂′ω̃2 ξ̂′

=
3N

∑
n=1

(
p̂′2ι
2
+
1
2
ω̃2
ι ξ̂′2ι )

(3.55)

Here, ω̃2
n are eigenvalues of the real symmetric matrix Q, Q = Vω̃2VT, and ξ′ are the

coupled coordinates, ξ′ = VTξ, which describe di�erent collective oscillations. ¿e
ground-state wave function of this system is then a simple product of the single-oscillator
ground-state wave functions, and the ground-state energy is a sum of the single-oscillator
ground-state energies, E0 = ∑n ω̃n/2. Drawing analogy with the RPA, the individual
oscillators model the particle-like quasi electrons in some coarse-grained way, while the
coupled oscillations model the wave-like electron oscillations. ¿is Hamiltonian has been
usedmany times to obtain various qualitative properties of long-range electron correlation
(Bade, 1957; Bade and Kirkwood, 1957; Mahan, 1965; Lucas, 1967; Renne and Nijboer,
1967; Donchev, 2006), but only recently to formulate general quantitative methods.

¿e relevance of the dipole-coupled oscillator model to the true electronic system can
be derived directly from the coarse-grained ACFD formula in (3.18). Assuming that the
e�ective and long-range dipole operators are equal, Tlr = Te�, using the Unsöld and local
approximations for the e�ective frequency, αe�(iu) = α(0)/(1 + u2/ω2), and truncating
the multipole expansion at L-th order, the integration over frequencies can be performed
analytically (Tkatchenko et al., 2013),

Ec,lr ≈
1
2π ∫ ∞

0
duTrp,R3 ( ln(1 + αe�(iu)Tlr))
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=
1
2π ∫ ∞

0
duTrp,R3 ( ln (

ω2 + αe�(0)
1
2ωTlrαe�(0)

1
2ω + u2

ω2 + u2
))

=
1
2π ∫ ∞

0
duTrp,R3 ( ln (Q(αe�(0),ω,Tlr) + u2) − ln(ω2 + u2))

=
1
2π ∫ ∞

0
duTrp,R3 ( ln(ω̃2

+ u2) − ln(ω2 + u2)) =
3N

∑
n=1

1
2π ∫ ∞

0
du ln(

ω̃2
ι + u2

ω2
ι + u2

)

=

L(L+2)N

∑
n=1

ω̃n

2
−

L

∑
l=1

N

∑
p=1

(2l + 1)
ωp

2
(3.56)

When truncated at the dipole term (L = 1), the matrixQ is identical to that in (3.55), and
the approximate long-range correlation energy is equal to the di�erence in the ground-
state energy between the dipole-coupled oscillators and noninteracting oscillators.

¿e exact equivalence between the dipole-coupled oscillators and the approximated
ACFD formula breaks when going beyond the dipole approximation. ¿e e�ective Hamil-
tonian that corresponds to the matrixQ truncated at L-th multipole order has L(L + 2)N
independent coordinates, ξ, each with a corresponding resonance frequency and polariz-
ability, and the analytic integration over frequency can be performed for any L. In contrast,
the coupled-oscillator Hamiltonian has always 3N coordinates, independent of the degree
of the multipole expansion of the Coulomb operator, and the interaction terms above
the dipole order are formed from nonlinear combinations of the coordinates, making the
Hamiltonian unsolvable in closed form.

Use of the coupled-dipole approach to formulate general methods for the long-range
correlation energy was initiated in the many-body dispersion (MBD) model developed by
Tkatchenko et al. (2012). MBD reuses the e�ective dynamic polarizability as approximated
in the TS pairwise method and combines it with a physically motivated e�ective dipole
operator. Motivated by the Gaussian shape of the harmonic-oscillator ground-state wave
function, Te� in MBD is derived from the screened Coulomb interaction between two
Gaussian unit-charge densities with widths σ , σ ′ (Mayer, 2007),

vgg(∣R∣) =
1

(πσσ ′)3 ∫∫ drdr′ e
−
∣r∣2
σ2 e−

∣r′−R∣2
σ′2

∣r − r′∣
= erf

⎛

⎝

∣R∣
√
σ 2 + σ ′2

⎞

⎠

1
∣R∣

(3.57)

Tgg(R) = ∇⊗∇′vgg(∣r − r′∣)∣r=R
r′=0

(3.58)

When used as Te� in MBD, the widths are derived from the corresponding dipole polariz-
abilities, making the e�ective dipole operator frequency-dependent,

σp(u) = ( 1
3

√
π
2 αe�,p1(iu))

1
3 (3.59)

In general, Tlr ≠ Te�, and the frequency integral cannot be evaluated analytically as
shown above. To circumvent this obstacle, Ambrosetti et al. (2014) separated Tgg further
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into the long-range part and the short-ranged remainder,

Tgg(u) = (Tgg(u) − Tlr) + Tlr ≡ Tsr(u) + Tlr (3.60)

¿e long-range correlation energy is then calculated in two steps. First, the e�ective
polarizability is screened by the short-range dipole operator,

∫ 10 dλα(u; λ) = ∫ 10 dλ(α−1e�(u) + λTgg(u))
= ∫ 10 dλ(α−1e�(u) + λTsr(u) + λTlr)
≡ ∫ 10 dλ(α−1sr (u; λ) + λTlr)
≈ ∫ 10 dλ(α′−1e� (u) + λTlr)
= ln (1 + α′−1e� (u)Tlr)

(3.61)

α′e�,p(u) = ∑
q
TrR3 (αsr,pq(u; λ = 1)) (3.62)

Second, the dipole-coupled Hamiltonian in (3.54) is solved with α(0) and ω calculated
from α′e�, and T set to Tlr, which is de�ned using the range-separating function of the TS
method with a smoother switching pro�le.

Silvestrelli (2013) developed another method inspired byMBD in which the oscillators
do not model the response of the atoms, but of Wannier functions. ¿is Wannier-based
MBD is to the pairwise vdW-WNmethodwhat the range-separatedMBD is to the pairwise
TS method. Unlike in vdW-WN, here the polarizabilities of the Wannier functions are not
calculated using a local polarizability functional, but directly from the Hirshfeld volumes
of the Wannier functions.



Chapter 4

Many-body dispersion method

This chapter presents new developments within the many-body dispersion (MBD)
method, namely the reciprocal-space formulation, theMBD dielectric constant, several
analytical results for the MBD wave function, and the analysis of the MBD nuclear
forces and self-consistency. Some of these results are used in the following chapters.
All the presented results have been implemented in program ‘pymbd’ (Hermann,
2017), which is a standalone Python program as well as a Fortran library included in
electronic-structure programs FHI-aims and DFTB+.

4.1 Reciprocal-space formulation

In a crystal, the matrices involved in the multipole expansion of the polarizability are
in�nite, and the normal real-space formalism becomes intractable. ¿e most straight-
forward resolution is to cut a su�ciently large piece of the crystal consisting of multiple
unit cells, a supercell, and apply periodic boundary conditions by summing the dipole
operator over the periodic images. As shown below, this formalism, while conceptually
simple, is not very e�cient. ¿e supercell approach is an unnecessary complication that
introduces the issue of slow convergence with respect to the supercell size and makes the
MBD calculation computationally as expensive as the corresponding KS-DFT calculation
in some cases. ¿e formalism developed in this section resolves these problems.

A more natural formulation uses the discrete version of the Fourier transformation
in (2.62). ¿e trace over the in�nite number of atoms in a crystal in the MBD version of
the ACFD formula in (3.56) is then transformed into a trace over atoms in a single unit
cell and the reciprocal-space vectors from the �rst Brillouin zone, q,

EMBD
c,lr =

1
2π ∫ ∞

0
duTrqpR3 ( ln(1 + αe�(iu)Tlr(q)))

=
(2π)3

ΩUC
∫ dq

3N

∑
n=1

ω̃n(q)
2

−
N

∑
p=1
3
ωp

2

(4.1)
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Figure 4.1 ∣ Convergence of energy in the supercell and reciprocal-space approach. Diàer-
ent convergence behavior for the 2D graphene layer (a) and the 3D argon crystal (b).
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αe�,p(q, iu) = ∑
R
αe�,Rp ,R+Rp(iu)eiq⋅R = αe�,p(iu) (4.2)

Tlr,pq(q) = ∑
R
Tlr,Rp ,R+Rqe−iq⋅(Rp−R−Rq) (4.3)

¿e diagonalization ofQ(q) that leads to ω̃(q)maps again exactly on the solution of the
Fourier-transformed dipole-coupled Hamiltonian, and the diagonalizing vectors, V(q),
correspond to periodic collective electron oscillations with wavelength 2π/∣q∣, described
by collective coupled coordinates ξ′(q). Bučko et al. (2016) presented the reciprocal-space
formulation of MBD without performing the analytic integration over the frequency.

¿e reciprocal-space formulation provides superior computational e�ciency com-
pared to the supercell approach for two reasons. ¿e only two computationally demanding
tasks in calculating the MBD energy are the formation of the dipole operator, with com-
plexity O(N2), N being the number of atoms, and the diagonalization or inversion of
matrices, with complexity O(N3). Except for the smallest systems, the latter dominates.
¿e reciprocal-space integration over q is easily performed on an equidistant grid of Nq
vectors, and the calculation of the MBD energy then involves Nq diagonalizations of the
matrixQ(qn). Each diagonalization has a computational complexity O(N3), N being the
number of atoms in the unit cell, and the total complexity is O(NqN3). In e�ective 1D
and 2D systems (chains and layers), the rates of convergence of the energy with respect
to the number of cells in the supercell, Nc, and to the number of points in the q-grid
are equal (Figure 4.1a), so for a given desired accuracy, Nc = Nq. But the computational
cost of the supercell calculation is O((NcN)3) = O(N3

cN3), N2
c times larger than that

of the reciprocal-space calculation. ¿e second reason for the better e�ciency of the
reciprocal-space formulation is that because the lattice sums of the dipole operator are not
absolutely convergent in 3D systems, the energy converges slower with Nc in the supercell
approach than with Nq in the reciprocal-space formulation for 3D systems (Figure 4.1b),
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so for a given required accuracy, Nq < Nc.
¿e lattice sum in the de�nition of Tlr(q) can be e�ciently computed using the Ewald

summation in (2.68). ¿e optimum balance between the computational cost of the real-
space and reciprocal-space sum in the Ewald sum is reached by setting α = 2.5/ 3

√
ΩUC

(a.u.). Using the real-space cuto� of 6/α and reciprocal-space cuto� of 10α then leads to
MBD energies that are accurate up to 10 signi�cant digits with respect to fully converged
references, while the computational cost is typically by two or more orders of magnitude
smaller compared to su�ciently converged calculations of MBD energies without Ewald
summation.

4.2 Dielectric function fromMBD

All approximate vdW methods based on the range-separated ACFD formula can be
tested in two independent ways. Testing against accurate reference polarizabilities gives
information about αe� and Te�, but is independent of the range-separation mechanism
expressed inTlr, whereas comparison against benchmark interaction energies tests all these
three components combined. For bulk material, there is no straightforward measurable
equivalent of the total polarizability of a molecule. (¿e total polarizability of a �nite
crystal sample depends on its shape.) But an indirect measure of the bulk polarizability is
provided by the macroscopic dielectric function.

Using the de�nitions in Section 2.10.1 and the Fourier transformation, F , of the gradi-
ent operator, the dielectric function of theMBDmodel can be calculated straightforwardly,

q̂ ⋅ єM(u)q̂ = lim
q→0

1
1 + v(∣q∣)χ00(q, u)

= lim
q→0

1
1 + 4π

∣q∣2F[∇ ⋅∇′ ⋅ α]00(q, u)

= lim
q→0

1
1 + 4π

∣q∣2q ⋅ α00(q, u)q

= lim
q→0

1
1 + 4πq̂ ⋅ α00(q, u)q̂

≈ lim
q→0

1
1 + 4π

ΩUC
q̂ ⋅ (∑pq αpq(q, u))q̂

(4.4)

α(q, u) = (α−1e�(u) + Te�(q, u))
−1

(4.5)

¿e Unsöld approximation inherent in the MBD polarizability makes this approach of
little use for the dynamic dielectric function, but the static dielectric constant should be
represented as accurately as total polarizabilities of molecules. Here, the use of the Ewald
summation is crucial, since the required cuto� of the full real-space summation diverges
as q→ 0.
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In a simple cubic lattice, the bare dipole operator, T(q), can be written in closed form
for small q,

T(q) =
4π
ΩUC

(k̂ ⊗ k̂ − 1
3I) + O(∣q∣) (4.6)

¿e expression for the dielectric function above then yields the Clausius–Mossotti equa-
tion,

єM(0) − 1
єM(0) + 2

=
4π
3
αe�(0)
ΩUC

(4.7)

With more complex unit cells and the e�ective dipole operator from MBD, the resulting
dielectric function is in general anisotropic. ¿erefore, this approach can be interpreted
as a generalization of the Clausius–Mossotti approximation.

4.3 Properties of dipole-coupled wave function

¿e diagonalization of the Q matrix of the MBD Hamiltonian in (3.55) results in the
coupled resonance frequencies, ω̃, which give the MBD energy, as well as the eigenvectors,
V = (v1v2 . . .), which de�ne the coupled coordinates, ξ̂ = VTξ, in which the MBD Hamil-
tonian decouples into a noninteracting Hamiltonian. ¿e ground-state wave function is
the product of harmonic-oscillator ground-state wave functions,

ψ0({ξ̃n}) =∏
n

(
ω̃n

π
)

1
4

exp (− 1
2 ω̃n ξ̃2n) (4.8)

¿is section presents several new analytical results for this correlated wave function, some
of which are used in Chapter 5.

4.3.1 Charge density

When interpreted as an approximation to the full electronic Hamiltonian, the pseudo
electrons in the MBD Hamiltonian e�ectively model the polarizable electrons in the
valence shells of atoms. One may then ask what is the charge density of these pseudo
electrons, how is it di�erent from the noninteracting system, and whether this change
captures the true electron-density redistribution caused by long-range electron correlation.

¿e charge density of any system of N charged particles is de�ned as an expectation
value of the charge-density operator,

n(r) = ⟨Ψ∣∑
i
qi ∣ri = r⟩⟨ri = r∣Ψ⟩ = ∫ ∫q dr1⋯drN∑

i
qiδ(r − ri)Ψ({r j})2 (4.9)
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To evaluate this expression for (4.8), we �rst transform the wave function back to ξ and
gather the product of the exponentials,

Ψ({ξi}) =
⎛

⎝
∏
i
(
ω̃i

π
)

1
4⎞

⎠
exp

⎛

⎝
− 1

2∑
jk
∑
i
Vjiω̃iVki

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ω jk

ξ jξk
⎞

⎠
(4.10)

In the following, we use∑i∉A for a sum that skips the A-th particle and∑i∈A for a sum
over the three Cartesian coordinates of the A-th particle. For a given A, we divide the
sum over jk according to the order of ξi∈A,

∑
jk
Ω jkξ jξk = ∑

j∉A
k∉A

Ω jkξ jξk + 2∑
p∈A
k∉A

Ωpkξpξk + 2∑
p∈A
q∈A

Ωpqξpξq

≡ ξ′TA Ω
′′
Aξ

′

A + 2ξ
′T
A Ω

′
AξA + ξ

T
AΩAξA

(4.11)

¿e linear term can be removed by completing the square with respect to ξ′A,

∑
jk
Ω jkξ jξk = (ξ′TA − hTA)Ω

′′
A(ξ

′

A − hA) + ξ
T
AΩAξA − ξ

T
AΩ

′T
A Ω

′′−1
A Ω′

AξA (4.12)

Here, hA is some quantity that does not depend on ξ′A. We can now factor out the
exponential and the 3N-dimensional integral,

n(r) = ∑
A
qA ( ∫ ∫q dr1⋯drA−1drA+1d⋯rN) ∫ drAδ(r − rA) . . . (4.13)

First, we evaluate the integrals in parentheses. Because hA is just a constant coordinate
shi , and the integrals are over the whole space, hA can be transformed away. Furthermore,
we can rotate Ω′′

A into a new basis where it becomes diagonal, which factors the 3(N − 1)-
dimensional integral into a product of 3(N − 1) 1-dimensional integrals over Gaussian
functions of the form exp(−ω̄A,i ξ̄2A,i), where ω̄A,i are the eigenvalues of Ω′′

A. (¿e factor of
1
2 disappears due to the square of the wave function.)

Second, the integral over rA picks the value of the following function at point r via the
δ-function,

exp ( − ξTA(ΩA −Ω′T
AΩ

′′−1
A Ω′

A
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ω(A)

)ξA) (4.14)

Combining (4.9), (4.10), (4.12), and the previous two paragraphs, and transforming from
ξA back to rA, we get

n(r) = ∑
A
qA (

mA

π
)

3
2

¿
Á
ÁÀ ∏

3N
i=1 ω̃i

∏
3(N−1)
i=1 ω̄A,i

exp ( −mA(r −RA)
TΩ(A)

(r −RA)) (4.15)
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4.3.2 First-order perturbation correction

¿e dipole-coupled wave function can serve as a zeroth-order Hamiltonian in a perturba-
tion expansion with the perturbation equal to the di�erence between the full Coulomb
interaction and the dipole interaction, V̂ee − V̂pp. ¿e �rst-order correction does not
capture any correlation energy from the higher multipoles (those start at second order),
but it can serve as a measure of how e�ective is the Gaussian-screened dipole potential of
MBD at mimicking the full Coulomb interaction at short range.

¿e �rst-order perturbation energy is just the expectation value of the perturbation
Hamiltonian for the ground state,

E(1)
MBD = ⟨ψ0∣Vee − Vpp∣ψ0⟩ (4.16)

¿e expectation value of the Coulomb operator is a sum of two-particle terms,

⟨ψ0∣ 12∑
AB

qAqB
∣rA − rB∣

∣ψ0⟩ (4.17)

In analogy to the calculation of n(r), for each particle pair we rotate the 3(N − 2) coor-
dinates that are not in the Coulomb term such that the corresponding integrals become
integrals over Gaussian functions, and then evaluate the remaining 6-dimensional integral
over rA and rB.

Introducing ξAB = (ξAξB), a 6-dimensional vector, and Ω(AB) which is an equivalent
of Ω(A) from the previous section, we can write the necessary integral as

I1 = ∫∫ dξAdξB
exp ( − ξTABΩ

(AB)ξAB)
∣rA − rB∣

(4.18)

We start by rewriting the Coulomb potential as an integral,
1

∣rA − rB∣
=

2
√
π ∫ ∞

0
du exp(−∣rA − rB∣2u2) (4.19)

Inserting into (4.18), and transforming to rA, we get a 7-dimensional integral over a
Gaussian,

I1 = 2
√mAmB

π ∫∫ drAdrB ∫ ∞

0
du

× exp [ − (rAB −RAB)
TΩ′(AB)

m (rAB −RAB) − rTABU2rAB] (4.20)

Here, Ω′(AB) absorbed the masses and U2 is de�ned as

U2 = u2

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1
−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4.21)
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Following with the integrand only, we rearrange terms and complete the square with
respect to rAB,

exp [ − rTAB(Ω
′(AB)
m +U2)rAB + 2RT

ABΩ
′(AB)
m rAB −RT

ABΩ
′(AB)
m RAB]

= exp [ − (rAB − hAB)T(Ω′(AB)
m +U2)(rAB − hAB)]

× exp [ −RT
AB(Ω

′(AB)
m −Ω′(AB)

m (Ω′(AB)
m +U2)

−1Ω′(AB)
m )RAB] (4.22)

As in the charge-density calculation, the �rst exponential can be shi ed and rotated
into a diagonal form, upon which the spatial integrals can be easily evaluated,

∫∫ drAdrB exp [ − rTAB(Ω
′(AB)
m +U2)rAB] =

π3
√
∏

6
i=1 λAB,i(u)

(4.23)

Here, λAB,i(u) are the eigenvalues of (Ω′(AB)
m +U2). ¿e remaining 1-dimensional integral

over u from 0 to∞ has a �nite integrand that decays exponentially to zero, and can be
quickly evaluated numerically.

Combining all parts together, we get

⟨Ψ∣ 12∑
AB

qAqB
∣rA − rB∣

∣Ψ⟩ =
1
2∑AB

qAqB

¿
Á
ÁÀ ∏

3N
i=1 ω̃i

∏
3(N−2)
i=1 ω̄AB,i

× ∫ ∞

0
du

exp [ −RT
AB(Ω

′(AB)
m −Ω′(AB)

m (Ω′(AB)
m +U2)

−1Ω′(AB)
m )RAB]

√
∏

6
i=1 λAB,i(u)

(4.24)

¿e calculation of the dipole term, ⟨ψ0∣Vpp∣ψ0⟩, is straightforward. First, we transform
the dipole potential to the coupled basis and gather the prefactors,

T̃i j = ∑
kl
CkiCl jωkωl

√

αk(0)αl(0)Tkl (4.25)

¿en,

⟨Ψ∣Vpp∣Ψ⟩ = ⟨Ψ∣ 12∑
i j
ξ̃i ξ̃ jT̃i j∣Ψ⟩

=
1
2∑i≠ j

T̃i j (
ω̃iω̃ j

π2
)

1
4 ∫ dξ̃i ξ̃i exp(−

1
2
ω̃i ξ̃2i) ∫ dξ̃ j ξ̃ j exp(−

1
2
ω̃ j ξ̃2j)

+
1
2∑i

T̃ii

√
ω̃i

π ∫ dξ̃i ξ̃2i exp (−ω̃i ξ̃2i ) = ∑
i

T̃ii
4ω̃i

(4.26)

¿e i ≠ j terms vanished because the integrands are odd functions.
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4.3.3 Anisotropic Gaussian screening

¿e technique used in the previous section can be also used to generalize the Gaussian
screening of the Coulomb interaction, used in MBD to derive the e�ective dipole in-
teraction, to anisotropic Gaussian charge densities. ¿is might be used to construct
appropriate range separation for atomic fragments with anisotropic polarizabilities, which
is investigated in Chapter 8. Integrals of the same kind are routinely evaluated in all
quantum-chemistry algorithms based on Gaussian basis sets, but those are always with
isotropic Gaussian functions.

¿e electrostatic energy of two Gaussian unit-charge densities located at RA with
anisotropic widths σA = 1/

√
KA is expressed as an integral similar in form to (4.18),

I2(K1,K2) =

√
det(K1K2)

π3 ∫∫ dr1dr2
e−(r1−R1)⋅K1(r1−R1)e−(r2−R2)⋅K2(r2−R2)

∣r1 − r2∣
(4.27)

¿e prefactor ensures proper normalization,

lim
a→∞

I2(aK1, aK2) =
1

∣R1 −R2∣
(4.28)

By identifying mA = 1 and Ω(12)
≡ K = K1 ⊕K2, I2 is mapped to I1 of the previous section,

and the �nal result is obtained by following the same procedure,

I2(K1,K2) =
2

√
π ∫ ∞

0
du

√
detK

det(K +U2)
exp [−RT (K −K(K +U2)

−1K)R] (4.29)

As before, the integrand is �nite everywhere and decays exponentially to zero, so the
integral can be e�ciently evaluated by numerical quadrature.

For the isotropic case, KA = I/σ 2A, this reduces to (3.58),

I1(σ1, σ2) =
2

√
π ∫ ∞

0
du (1 + u2(σ 21 + σ 22 ))

− 3
2 exp [−

u2∣R1 −R2∣
2

1 + u2(σ21 + σ22 )
]

=
2

√
π ∫ 1/

√
σ 21 +σ

2
2

0
dv exp (−v2∣R1 −R2∣

2)

= erf
⎛

⎝

∣R1 −R2∣
√
σ21 + σ 22

⎞

⎠

1
∣R1 −R2∣

(4.30)

¿e corresponding dipole operator is obtained by applying the tensor gradient,

∇R1 ⊗∇R2 I2 ≡ ∇R1 ⊗∇R2 ∫ ∞

0
dui2(u) = ∫ ∞

0
du∇R1 ⊗∇R2 i2(u)

= ∫ ∞

0
du( − 2K12 + 4(K11R1 +K12R2) ⊗ (K12R1 +K22R2))i2(u)

(4.31)

[
K11 K12
K12 K22

] ≡ K −K(K +U2)
−1K (4.32)
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4.3.4 Interaction energy decomposition

¿e interaction energy of two systems, S1, S2, is calculated with any total-energy method
as the di�erence between the energy of the combined system and the subsystems,

E(int)(S1, S2) = E(S1S2) − E(S1) − E(S2) (4.33)

By construction, the pairwise vdWmethods give a clear interpretation of the interaction
energy in terms of pairs of atoms (fragments) in which the atoms are from di�erent
subsystems,

E(int)c,lr (S1, S2) ≈ −∑
A∈S1 ,B∈S2

C6,AB
f (RA,RB)

∣RA −RB∣
6 (4.34)

In the pairwise picture, the total collective oscillations in the system are decomposed
into oscillations between individual pairs of atoms, and because this decomposition is
identical in the total system and the individual subsystems, only the inter-system oscilla-
tions contribute to the interaction energy. But in MBD, the total long-range correlation
energy has the form of a sum of energies of the individual collective oscillations, which
are fully delocalized and di�erent in the total system and the subsystems. Using the
transformation between the uncoupled and coupled coordinates, however, the coupled
oscillation energies of the subsystems can be projected into the coupled basis of the system
and vice versa, which leads to a decomposition of the MBD interaction energy into the
individual collective oscillations of the system. ¿is provides a clear physical picture of
the binding that is utilized in Chapter 5.

¿e MBD interaction energy between two subsystems is expressed in terms of the
coupled oscillation frequencies of the system, ω̃, and of the subsystems, ω̃1, ω̃1, and the
uncoupled oscillation frequencies in the system, ω, and in the subsystems, ω1, ω2,

E(int)MBD =
3N

∑
n=1

(ω̃)n
2

−
3N

∑
n′=1

(ω̃1 ⊕ ω̃2)n′

2
−

3N

∑
n′′=1

(ω − ω1 ⊕ ω2)n′′

2
(4.35)

Here, n runs over the coupled coordinates of the system, n′ over coupled coordinates
of the subsystems, and n′′ over the uncoupled coordinates, and we wish to project the
frequencies in such a way that the whole expression is a single sum either over n or over
n′. In general, the e�ective noninteracting frequency of a given oscillator in the subsystem
and in the total system are not equal in MBD, ω ≠ ω1 ⊕ ω2, due to the slightly di�erent
Hirshfeld partitioning and short-range polarizability screening between the system and
the subsystems.

Using the eigenvectors, V1 = (v1v2 . . .), V2, of the subsystem MBDmatrices, Q1, Q2,
and the eigenvectors, V, of the total-system MBD matrix,Q, we can construct a projector
from the basis of the coupled subsystem coordinates, ξ̃1 ⊕ ξ̃2, to the basis of the coupled
system coordinates, ξ̃,

P = VT(V1 ⊕V2) (4.36)
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¿is projector is orthonormal and retains the norm of a vector, but the total MBD energy
is a 1-norm of the vector of oscillation energies, EMBD = ∣ω/2∣1, which is retained by an
elementwise (Hadamard) square of the projector,

(P○2)i j = (P)2i j (4.37)

Likewise, (V○2)T and (V○2
1 ⊕V○2

2 )T are projectors from the uncoupled basis of noninter-
acting oscillators to the coupled basis of the total system and the subsystems, respectively.
With these projectors at hand, (4.35) can be expressed as a single sum over the coupled
coordinates of the system or the subsystems,

E(int)MBD =
3N

∑
n=1

1
2 (ω̃ − P

○2(ω̃1 ⊕ ω̃2) − (V○2)T(ω − ω1 ⊕ ω2))n (4.38)

E(int)MBD =
3N

∑
n′=1

1
2 ((P

○2)Tω̃ − ω̃1 ⊕ ω̃2 − (V○2
1 +V○2

2 )T(ω − ω1 ⊕ ω2))n′ (4.39)

¿e vectors under the summation signs can nowbe interpreted as di�erent decompositions
of the MBD interaction energy into the coupled oscillations.

4.4 Nuclear forces and self-consistency

In this section, we analyze the problem of nuclear forces in a combined KS-DFT+MBD
calculation. Nuclear forces are the (negative of) total derivatives of the energy with respect
to the positions of the nuclei, and are the necessary quantity for structure optimization,
calculations of vibration spectra, and derived quantities. As such, they are one of the
cornerstones of computational chemistry and computational material physics.

In the following, we assume that the KS calculation is done in a �nite one-electron
basis, {∣µ⟩}, which leads to the description of any particular KS state, ∣Ψ⟩, in terms of the
matrix elements, Pµν, of the density-matrix operator, ∣Ψ⟩⟨Ψ∣. ¿is enables expressing any
measurable quantity, such as energy or the electron density, n, in terms of the density
matrix,

n(r) = ⟨Ψ∣n̂(r)∣Ψ⟩ = ⟨Ψ∣∑
µ
∣µ⟩⟨µ∣n̂(r)∑

ν
∣ν⟩⟨ν∣Ψ⟩

= ∑
µν

⟨µ∣Ψ⟩⟨Ψ∣ν⟩⟨µ∣n̂(r)∣ν⟩ = ∑
µν
Pµνφµ(r)φν(r)

(4.40)

¿e total KS energy, EKS, is a system-dependent (via the external potential) functional
of the electron density, and hence of the density matrix and the one-electron basis. In a
standard KS calculation, the nuclear coordinates and the one-electron basis are �xed, and
the KS ground state is found by minimizing the total energy (via the HK theorem) with
respect to the density matrix, so that the partial derivatives are zero, ∂EKS/∂Pµν = 0. ¿e
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total derivative of the KS energy consists of three terms via the chain rule (α = x , y, z),

dEKS({RAα}, {φµ},P)
dRBβ

=
∂EKS
∂RBβ
´¹¸¹¶

Feynman forces

+∑
µν

∂EKS
∂Pµν

∂Pµν
∂RBβ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+∑
µ
∫ dr δEKS

δφµ(r)
∂φµ(r)
∂RBβ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Pulay forces

(4.41)

¿e �rst term is the explicit derivative, which is equal to the electrostatic force from the
electron density on the nucleus B (Feynman, 1939), the second term is zero because of
the energy minimization, and the third term is nonzero only when the one-electron basis
depends on the nuclear coordinates.

¿e MBD energy, EMBD, is a function of the nuclear coordinates and of the Hirshfeld
volumes (eq. 3.45), VA = ∫ dr n(r)vA(r), which in turn are functionals of the electron
density, and hence of the density matrix and the one-electron basis. ¿e total derivative is
obtained via chain rules,

dEMBD({RAα}, {VA})
dRBβ

=
∂EMBD

∂RBβ
+∑

A

∂EMBD

∂VA
dVA
dRBβ

=
∂EMBD

∂RBβ
+∑

A

∂EMBD

∂VA
(
∂VA
∂RBβ

+ ∫ dr δVA
δn(r)

dn(r)
dRBβ

)

=
∂EMBD

∂RBβ
+∑

A

∂EMBD

∂VA
⎛

⎝ ∫ dr∂vA(r)
∂RBβ

n(r)+ ∫ dr vA(r)(∑
µν

∂n(r)
∂Pµν

∂Pµν
∂RBβ

+∑
µ

∂n(r)
∂φµ(r)

∂φµ(r)
∂RBβ

)
⎞

⎠

=
∂EMBD

∂RBβ
+∑

A

∂EMBD

∂VA
⎛

⎝ ∫ dr∂vA(r)
∂RBβ

n(r) − 2 ∫ dr vA(r) ∑
µ∈B,ν

Pµνφν(r)∇βφµ(r)
⎞

⎠

+∑
µν

⎛

⎝
∑
A

∂EMBD

∂VA ∫ dr vA(r)φµ(r)φν(r)
⎞

⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∂EMBD/∂Pµν

∂Pµν
∂RBβ

(4.42)

Combining the KS and MBD forces together, the �nal expression consists of seven
terms,

d(EKS + EMBD)

dRBβ
= (KS Feynman forces) + (KS Pulay forces) +

∂EMBD

∂RBβ
´¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

I

+∑
A

∂EMBD

∂VA
⎛

⎝ ∫ dr∂vA(r)
∂RBβ

n(r)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
IIa

− 2 ∫ dr vA(r) ∑
µ∈B,ν

Pµνφν(r)∇βφµ(r)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
IIb

⎞

⎠



66 CHAPTER 4. MANY-BODY DISPERSION METHOD

+∑
µν

⎛

⎝

∂EKS
∂Pµν
´¸¹¶
IIIa

+
∂EMBD

∂Pµν
´¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

IIIb

⎞

⎠

∂Pµν
∂RBβ

(4.43)

Term I is the direct force, computed with the Hirshfeld volumes �xed, and was given
independently by Blood-Forsythe et al. (2016) and Bučko et al. (2016) as analytic expres-
sions. ¿is is by far the dominant part of the MBD forces. Calculation of terms IIa and IIb
requires ∂EMBD/∂VA, also given by Blood-Forsythe et al. (2016). Term IIa is the force due
to the dependence of the Hirshfeld-volume weight on the nuclear coordinates, and can be
calculated straightforwardly from derivatives of the radial free-atom densities. Using a
plane-wave basis set, Blood-Forsythe et al. (2016) found that the contribution of this term
to the total forces is non-negligible in a test set of peptides. Term IIb would be equal to
zero in basis sets that do not depend on the nuclear coordinates (such as plane waves),
and is the equivalent of the Pulay forces for the KS energy.

Terms IIIa and IIIb arise from the dependence of the density matrix on the nuclear
positions. When the MBD calculation is performed only a er the KS-DFT calculation is
converged (a posteriori), then IIIa is zero, and IIIb is nonzero. On the other hand, when
theMBDKS potential, δEMBD[n]/δn(r), is calculated and included self-consistently in the
KS calculation, then the total DFT+MBD energy is minimized with respect to the density
matrix, and IIIa and IIIb together are zero. ¿e e�ect of self-consistency of the pairwise
TS method on the resulting electron densities was investigated by Ferri et al. (2015). ¿e
MBD KS potential can be calculated directly from the knowledge of ∂EMBD/∂VA,

vKS,MBD(r) =
δEMBD

δn(r)
= ∑

A

∂EMBD

∂VA
δVA
δn(r)

= ∑
A

∂EMBD

∂VA
vA(r) (4.44)

We have implemented the evaluation of terms IIa, IIb, and of the MBD KS potential in
the FHI-aims code (Blum et al., 2009), which uses an atom-centered basis set, to test the
relative importance of the terms in (4.43). For testing purposes, we used 10 dimers from
the S22 benchmark set of small organic dimers at equilibrium geometries, and the black
allotrope of phosphorus as an instance of a layered material with strong inter-layer vdW
interactions. As a benchmark, we used 5-point �nite di�erencing to calculate the true
forces. In all cases, we found that the di�erence between the forces in a self-consistent
and a posteriori MBD calculation, which can serve as an estimate of the magnitude of
term IIIb, is below the inherent accuracy of the KS calculation. ¿e terms IIa and IIb
were individually non-negligible, in line with the previous results, but surprisingly, the
combined term fell again below the baseline accuracy in all cases. ¿is explains and
solidi�es the empirical observation that the derivatives of Hirshfeld volumes are non-
negligible in a plane-wave basis, but can be neglected altogether in atom-centered basis
sets in most circumstances.



Chapter 5

Charge-oscillation nature of π–π interactions

This chapter uses the decomposition of the coupled-oscillator wave function and the
expression for the coupled-oscillator density from Chapter 4 to give a clear physical
picture of binding in π–π stacked systems. This study illustrates the beneäts of formu-
lating a method (MBD in this case) via a model Hamiltonian, which gives automatically
access not only to the energy but also to the wave function. The results show that the
π–π stacking is associated with vdW interactions originating from collective nonlocal
oscillations, which explains the diáculties of pairwise vdWmethods to describe these
systems accurately. It is demonstrated that besides interaction energies, the harmonic
oscillators can yield also a good prediction of the vdW-associated redistribution of the
electron density, which then partially motivates the focus on the spatial distribution
of the local polarizability in Chapter 8. Most of the results in this chapter have been
published in (Hermann et al., 2017a). The diàusion quantumMonte-Carlo calculations
were done by prof. Dario Alfè from University College London.

5.1 Background

Noncovalent π–π interactions is the name given by chemists to the common stacking
pattern of planar or locally planar molecular systems that are characterized by π orbitals—
the aromatic systems. ¿e binding pattern having its own name is supported by its
importance in chemistry and biology. π–π interactions play a key role in the formation
of the double-helix structure of RNA and DNA by stabilizing the stacked nucleobases
(Hunter, 1993). In general, they contribute to most chemical and biological self-assembly
mechanisms, including protein folding (Ariga et al., 2008; Zhang, 2003). Biochemical
recognition, inherent in drug design, is o en driven by stacking of aromatic compounds
(Meyer et al., 2003). ¿e recently established �eld of vdW heterostructures studies layered
materials with functional properties designed by precise ordering of layers (Geim and
Grigorieva, 2013). ¿e stability of such structures is largely driven by aromatic stacking
interactions.

67
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Despite their distinct nature, π–π interactions are just a result of the fundamental
long-range electron interactions, and as such can be calculated with excellent precision
using high-level methods of quantum chemistry, when the systems are small enough that
such calculations are feasible. Benzene dimer, a prototypical aromatic stacked system,
has been investigated by many authors using methods such as the coupled-cluster theory
and symmetry-adapted perturbation theory (SAPT) (Hobza et al., 1996; Kim et al., 2000;
Sinnokrot et al., 2002; Sinnokrot and Sherrill, 2006; DiStasio et al., 2007; Podeszwa et al.,
2006), and these studies determined its binding energy of ∼2.7 kcal/mol to within 2%
accuracy. But due to their complex formulations, these methods cannot provide any
understanding of the binding energy, and hence the stacking pattern, in terms of the
underlying electronic motions. ¿e SAPT provides decomposition of the total binding
energy in terms of exchange, electrostatic, induction, and dispersion components, but
these decompositions are not in any way qualitatively speci�c to π–π interactions. Earlier,
Hunter and Sanders (1990) tried to give a qualitative picture of π–π interactions in terms
of the characteristic arrangement of permanent quadrupole moments in aromatic systems,
but this model is not supported by the high-level calculations. ¿is led some to suggest
that there is indeed nothing electronically special about π–π stacking and that the use of
the term π–π “interactions” cannot be justi�ed.

On the other hand, long-range plasmon oscillations in low-dimensional zero-gap
materials, including the aromatic graphene, lead to characteristic power laws in the
dependence of the binding energy on distance (Dobson et al., 2006; Bordag et al., 2006).
¿e zero electronic gap in graphene is directly related to the system of conjugated π bonds,
and so at least in this particular case, π–π interactions are supported by a particular
collective electronic motion. ¿is view was further supported by Misquitta et al. (2010),
who showed that the smallness of the gap is inversely proportional to the length scale of
the plasmon oscillations and hence the electronic response. In contrast to the high-level
methods of quantum chemistry, these plasmon-based models give a good qualitative
understanding of the interactions, but cannot provide quantitative description of the
binding. ¿is is caused by the analytic formulation of the models, which enables deriving
the qualitative results, but cannot be easily extended to themicroscopic atomic description.

¿e MBDmethod, combined with semilocal KS-DFT calculations, reaches close to
the quantitative accuracy of high-level electronic-structure methods, while giving the
qualitative insight of simple response models. Furthermore, it is easily applicable to large
systems, which are inaccessible to the methods of quantum chemistry. ¿e ability to
provide insight stems from the formulation of the MBD method as a simple Hamiltonian
model. ¿is gives access to not only the energy, but also the underlying wave function.
Using the tools presented in Chapter 4, this wave function can be analyzed, and this
analysis can provide answers to the question whether the π–π stacking is characterized by
some speci�c electronic phenomenon.
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Figure 5.1 ∣Equilibriumstructuresof supramolecular complexesof fullereneC70. The arrows
denote the distances from centers of 6-member aromatic rings to the nearest point on the
fullerene. The three host molecules are [11]-cycloparaphenylene (a), [10]-cycloparaphenylene
(b), and the “buckycatcher” C60H24 (c) (Sygula et al., 2007).

a b c

5.2 Benchmarking MBD binding energies with DQMC

In general, any interpretations of the results by any DFT+vdW approach are compli-
cated by the ambiguity in the range separation between the short-range DFT part and
long-range vdW part. To avoid this issue, we studied π–π stacking pattern in supramolec-
ular complexes, where the binding energy is dominated by the long-range part, and all
qualitative answers are therefore delegated to the analysis of the MBD method. Further-
more, supramolecular chemistry is a relatively new �eld with much focus on the design
of novel complexes with targeted properties (Kawase, 2012). As such, a good intuitive
understanding of the involved interactions is especially important.

We chose three supramolecular complexes (Figure 5.1) as representative examples of
π–π interactions, which will be denoted C1, C2, and C3 in the order introduced below.
All three are already synthesized host–guest systems, in which the guest molecule is the
C70 fullerene with D5h symmetry, sometimes also called “rugbyballene” for its elongated
shape. Two host molecules are [11]- and [10]-cycloparaphenylenes (CPP) (Jasti et al., 2008),
which are the simplest precursors of (11, 11) and (10, 10) armchair nanotubes, and the
whole complexes with the fullerene molecule are therefore precursors of “nanotube pea
pods” (Okada et al., 2001; Monthioux, 2002). ¿e third host is the C60H24 tweezers-like
molecule that was speci�cally designed as a host for the C60 fullerene (Sygula et al., 2007),
hence the name “buckycatcher”. ¿e buckycatcher–fullerene complex is a typical example
of convex–concave systems, which are investigated as potential ball-and-socket joint
interfaces (Kawase and Kurata, 2006; Kawase, 2012). All three complexes were previously
investigated theoretically using the DFT+D3 approach (Grimme, 2012; Risthaus and
Grimme, 2013; Antony et al., 2015).
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Figure 5.2 ∣ Binding energies of supramolecular complexes with diàerent methods. The
bluebox for theDQMCmethodhas aheight of 2 kcal/mol anddenotes the statistical uncertainty
(70%) of the result.
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Before analyzing the bindingmechanismwithin theMBDmodel, we �rst want to verify
that it describes correctly the binding energetics. In principle, the experimental Gibbs
energies of formation could serve as reference data against which the calculated binding
energies could be compared. ¿eyweremeasured for all three complexes in a solution, and
the obtained values are 7, 7 (Iwamoto et al., 2013) and 5 kcal/mol (Mück-Lichtenfeld et al.,
2010) for C1 to C3, respectively. But calculation of Gibbs energies of formation in a solution
from binding energies in vacuum requires further calculations of the temperature and
solvation e�ects. Whereas the temperature e�ects can be estimated relatively accurately
from molecular vibrations using harmonic approximation, the quantitative uncertainty
of available solvation models is substantially worse than the accuracy of state-of-the-art
DFT+vdWmodels (Yang et al., 2013).

To avoid these issues, we compare the DFT+MBD binding energies against a higher-
level theoretical reference. ¿e size of the complexes prevents the use of the standard
reference method of quantum chemistry, the coupled-cluster method with single, double
and perturbative triple excitations (CCSD(T)). As a feasible alternative, we chose the
DQMC method (Section 2.4), which scales much better with system size and is easily
paralellizable, so that calculations on the present systems are feasible. ¿e only potential
systematic error in the DQMC method, caused by the �xed-node approximation, has
been shown to be negligible for binding energies of vdW complexes (Dubecký et al., 2013),
yielding results within 0.1 kcal/mol of the CCSD(T) method.
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¿e binding energies of the three complexes calculated with the DQMC, DFT+MBD
and DFT+D3 methods are compared in Figure 4.1. ¿e energies of the complexes were
calculated with respect to the energies of the relaxed components. ¿e equilibrium geome-
tries as well as the DFT+D3 results were taken from refs. (Risthaus and Grimme, 2013)
ands (Antony et al., 2015). We used the GGA functional of Perdew, Burke, and Ernzerhof
(1996a) (PBE) as the short-range complement of the MBDmethod. In Chapter 6, we show
that this functional is particularly consistent in the degree of short-range XC energy that
it captures. Being a stochastic method, the DQMC energies are always calculated with a
certain statistical uncertainty that can be chosen freely by the amount of computational
time invested in the calculation. Here, we chose the uncertainty of ±1 kcal/mol, which
is enough to judge the accuracy of the DFT+vdWmethods. Interestingly, the ratios of
the binding energies correspond quite accurately to the ratios of the Gibbs energies of
formation. ¿is suggests that temperature and solvation e�ects do not di�er signi�cantly
between the three complexes.

¿e results demonstrate that the PBE+MBD method is able to capture both absolute
and relative energetics of the complexes. ¿e largest deviation of PBE+MBD is 2.5 kcal/mol
in the case of complex C2, while the energies of the other two complexes are estimated
withing the statistical error of the DQMC method. ¿e near-degenerate complexes C1
and C2 are estimated to be only 1.5 kcal/mol apart. In contrast, the DFT-D3 method
systematically overestimates the binding energies by 7–12 kcal/mol, and the C1 and C2
complexes di�er by 7 kcal/mol. Adding the 3-body correction in D3 improves the system-
atic overbinding, but the relative energetics of C1 and C2 is not improved. In solution at
room temperature, the di�erence of 7 kcal/mol between the two complexes would result
in a near nonexistence of C2.

5.3 Analysis of nonlocal polarizabilities

¿e failure of the DFT-D3 method is much larger on the relative scale than could be antic-
ipated from its accuracy on smaller complexes, including π–π complexes such as benzene
dimer. ¿is discrepancy serves as a further motivation for understanding the speci�c
nature of the vdW interactions in π–π stacked systems. ¿e two main di�erences between
the D3 and MBD methods are in the models for the atomic dynamic polarizabilities (C6
coe�cients) and in the truncation of the many-body expansion of the ACFD formula (D3
is truncated at second order, third with 3-body correction, MBD is not truncated). In both
methods, the polarizability models are mostly local (geometric in D3, density-based in
MBD), and any de�ciency of the D3model in this regard wouldmanifest equally in smaller
systems, which is not the case, leaving the many-body e�ects as potential explanation for
the overbinding and missing degeneracy in the D3 description.

By evaluating the MBD screening equation in (3.61) for the whole complex, and the
host and guest molecules independently, the many-body e�ects can be formally divided
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into intra- and intermolecular. Writing the dipole operator in a block form, where the
blocks correspond to the host (h) and guest (g) molecules,

T = (
Thh Thg
Thg Tgg

) (5.1)

the fully coupled nonlocal dipole–dipole polarizability of the complex has an approxi-
mately block-diagonal form,

α = αh ⊕ αg + (
O(T2hg) O(Thg)
O(Thg) O(T2hg)

) (5.2)

Here, the nonlocal polarizabilities of the isolated host and guest molecules, αh and αg,
capture the intramolecular many-body e�ects, which are manifested in nontrivial depen-
dence of the total polarizability on system size (Gobre and Tkatchenko, 2013; Ruzsinszky
et al., 2012). Whereas the short-range screening usually depolarizes the system under the
e�ect of a �eld, the long-range intramolecular correlation enhances the polarization. As
a result, the total polarizability can be both smaller or greater than the sum of atomic
polarizabilities, based on the geometry, size and overall dimensionality of the system. For
instance, the bulky geometry of most fullerenes leads to smaller total polarizabilities with
respect to the polarizability of sp2 carbon atoms (Tkatchenko et al., 2012). In contrast,
linear and planar geometries o en lead to larger polarizabilities, as demonstrated for ex-
ample by the increased stabilization of linear acene dimers (Grimme, 2008; Ehrlich et al.,
2013) In the CPP–C70 complexes studied here, the electrodynamic screening decreases the
total polarizability of the fullerenes by 25% with respect to the sum of the Hirshfeld-scaled
free-atom polarizabilities, whereas the polarizability of [10]- and [11]CPP is increased by
31% and 34%, respectively. ¿is small di�erence cannot explain the inability of the D3
method, in which the intramolecular screening is neglected, to predict the degeneracy
between the two complexes.

¿e o�-diagonal blocks, αhg, in the nonlocal polarizability encode the majority of the
intermolecular many-body e�ects, and are directly related to the binding energy,

Eint,MBD =
1
4π ∫ ∞

0
duTrp,R3 (αhg(iu)Thg) + O(T3hg) (5.3)

(¿is expression is second-order in the intermolecular coupling, but in�nite-order in the
intramolecular coupling, so it contains, for instance, all three-atom Axilrod–Teller terms,
which are second-order in intermolecular coupling and �rst-order in intramolecular
coupling.) Figure 5.3 shows the o�-diagonal part of the polarizability in [10]CPP–C70.
In the Hamiltonian formulation of the MBD method, the o�-diagonal polarizability
translates into the di�erence in the coupled oscillations between the full complex and the
isolated host and guest, analyzed in the next section.
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Figure 5.3 ∣ Intermolecular part of the static nonlocal polarizability in [10]CPP–C70. The heat
map (a) shows the carbon–carbon x x elements of the polarizability, with yellow/red and blue
colors corresponding to the positive and negative values. The colored stripes denote the
atoms depicted with the corresponding color in the molecular structure (b). The pink arrow
shows the x axis.

a b

5.4 Charge polarization due to π–π interactions

¿is section gives some evidence that the MBD Hamiltonian is capable of modeling more
aspects of the full electronic system than just its long-range correlation energy. VdW
interactions usually induce only a small change in the electronic density (¿onhauser et al.,
2007; Vydrov et al., 2008), but can also lead to substantial polarization with measurable
e�ects (Ferri et al., 2015). In the many-body perturbation picture, the long-range inter-
molecular Coulomb force induces virtual excitations to higher-energy one-particle states,
which are always more di�used than the occupied states. As a result, the electron density
shi s to the outer regions of the atoms. In DFT, the local KS potential becomes slightly
slower decaying with increasing distance from the atoms, which again results in the elec-
tron density shi ing somewhat outwards. An example of this phenomenon in the case of
benzene dimer is shown in Figure 5.4a, calculated with the PBE+TS XC functional (Ferri
et al., 2015). In MBD, the interaction between the molecules induces new collective nonlo-
cal oscillations that have on average lower energies than in the isolated fragments, and
since oscillators with lower ground-state energy have more di�used wave functions, this
leads to a more di�use total charge density of the oscillators calculated with (4.15). (¿is
approach is di�erent from doing DFT+MBD calculations self-consistently, where the total
density would be of the real electrons, only slightly modi�ed by δEMBD[n]/δn(r).) Com-
parison on the benzene dimer of the KS-DFT charge polarization due to vdW interactions
and of the MBD oscillator polarization (Figure 5.4) shows a remarkable match between
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Figure 5.4 ∣Charge polarization due to vdW interactions. Electron density diàerence (charge
polarization) induced by vdW interactions between the benzene dimer and isolatedmonomers
calculated with the PBE+TS XC functional (a) and the MBD Hamiltonian (b). Yellow and blue
color represent accumulation and depletion of the charge density, respectively. Themagnitude
of the polarization is mapped to color saturation, with 50% corresponding to 2 × 10−5 (a.u.).

a b

the two approaches. ¿is suggests that although the oscillators in the MBD Hamiltonian
cannot in a reasonable way model the total electron density, they can model changes in
the electron density induced by long-range electron correlation. ¿e agreement between
the KS-DFT and MBD charge polarizations is even quantitative, with 0.0101 and 0.0097
displaced electrons (integral of max(0, ∆n)), respectively.

Turning back to the supramolecular complexes, their charge polarization due to vdW
interactions as calculated from the MBD density is shown in 5.5. ¿e charge polarization
gives an indirect measure of which spatial parts of the monomers contribute most to
the binding. Comparison of the complexes indicates that the charge �uctuations on the
fragments are relatively well separated in the [11]CPP complex, but not in the [10]CPP
complex, resulting in stronger many-body e�ects beyond the second-order (pairwise)
expansion of the long-range correlation energy in [10]CPP–C70. ¿is explains the stronger
overbinding of the [10]CPP complex by the D3 method.

5.5 VdW interactions as collective oscillations

¿e polarization of the MBD charge densities due to intermolecular interactions is a
combined e�ect of all the coupled oscillation modes. ¿is section analyzes the individual
modes and their relation to the total binding energy. Solving the MBD Hamiltonian for
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Figure 5.5 ∣ Charge polarization due to vdW interactions. The same visualization as in Fig-
ure 5.4 for the three supramolecular complexes in Figure 5.1.

a b c

the complex and the isolated fragments leads to di�erent modes with di�erent energies.
Figure 5.6 shows that the distribution of the energies is broadened in the complex with
respect to the fragments, so the binding mechanism is not a simple general shi of all the
energies. Rather, to �rst order in Thg, the energy spectrum is symmetrically broadened,
with no change to the total energy, and only in second order in Thg is the whole spectrum
shi ed to lower energies, leading to binding. ¿is is in contrast to orbital hybridization
in molecules, where the energy splitting can be considered symmetric and the covalent
binding arises from partial occupancy. In the MBD ground state, none of the coupled
modes are occupied, the total energy is the energy of the zero-point �uctuations, and the
binding arises from an asymmetric split of the subsystem energy levels.

Using the decomposition technique from Section 4.3.4, we can identify oscillation
modes that contribute most to the binding energy. ¿e decomposition in (4.38) in terms
of the coupled modes of the whole complex turns out not to be very useful, because
the most organized and collective modes contribute both positively and negatively. In
contrast, decomposing the binding energy along the coupled modes of the individual
subsystems as in (4.39) leads to mostly binding contributions. To transform back to the
full system, we multiply this decomposition by P○2. ¿e most contributing coupled modes
(Figure 5.7) have clear interpretation as global dipole and quadrupole oscillations. ¿ese
results suggest that an alternative to the pairwise picture of vdW interactions as correlation
between dipoles and quadrupoles on pairs of atoms is a collective picture where the whole
electronic system oscillates in a wave-like fashion. ¿esemolecular oscillations, also called
molecular plasmons in other contexts (Lauchner et al., 2015), are of the same nature as
plasmons in metals or electronic dipole waves in nanomaterials (Ambrosetti et al., 2016).

So far, we showed that the binding in supramolecular π–π complexes can be under-
stood in terms of collective wave-like electronic �uctuations. Next, we demonstrate that
this is quite characteristic of these systems, and the oscillations in other types of complexes
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Figure 5.6 ∣MBDdensitiesof states. Distributions of the coupled-oscillator energies smoothed
with Gaussian broadening of 0.06 eV.
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Figure 5.7 ∣Most binding oscillation modes. The doubly degenerate most binding (a) and
second most binding (b) oscillation mode of [10]CPP–C70, and the most binding mode of
buckycatcher–C70. The arrow on each atom denotes an in-phase dipole oscillation.

a b c

are either localized or disorganized. Figure 5.8 shows the most binding oscillation modes
of two π–π complexes (2a and 3a) and two complexes which are bound by unspeci�c vdW
and electrostatic interactions (5a and 7a). As in the three fullerene complexes, the most
binding mode in the π–π complexes is uniformly delocalized over the whole complex.
Furthermore, the decomposition of these modes into the subsystem modes shows that
they are not dominated by a single subsystem mode, but are a combination of several
subsystem modes, indicating their strong coupling. In contrast, the most binding modes
of the non-π–π complexes are rather disorganized, and even if delocalized, the motion has
no collective nature. Accordingly, these modes are dominated by a single subsystemmode,
so instead of strong coupling as in the stacked complexes, here a single subsystem mode
induces only weak oscillations on the other subsystem. ¿is suggests that the long-range
electronic oscillations in these systems could be e�ectively decomposed into pairwise
contributions, and indeed, the pairwise approaches are much more accurate for these
types of complexes than for the π–π complexes.

5.6 Testing nonequilibrium geometries

All structures investigated in the previous sections were equilibrium structures. ¿is
section presents an extension of the DQMC benchmark of the MBDmodel to nonequilib-
rium structures. ¿e higher-order many-body e�ects are sensitive to the symmetry of the
system, and it is imaginable that some hidden error-canceling mechanism in equilibrium
structures could lead to the high accuracy of MBD for the three C70 complexes. However,
Figure 5.9 shows that the excellent agreement between PBE+MBD and DQMC is achieved
even for several nonequilibrium geometries, with the largest deviation of 1.7 kcal/mol (5%).
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Figure 5.8 ∣Most binding oscillation modes in diàerent types of binding. Each row in the
table corresponds to a complex from the S12L benchmark dataset (Risthaus and Grimme, 2013).
The right-most column shows squares of the coeácients of the decomposition of the most
binding mode of the complex into the modes of the monomers. The number in red is the
inverse of the largest coeácients. The oscillation arrows are put only on atoms where the
magnitude of the dipole is larger than 10% of the maximummagnitude.
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In contrast, the pairwise PBE+TS method overbinds the complexes by 2 to 13 kcal/mol.
¿e nonuniform di�erence between TS and MBD shows that higher-order many-body
e�ects are more sensitive to the geometry than the baseline pairwise vdW energy. In
general, the relative di�erence between TS and MBD is larger in more tightly stacked
geometries, which is in line with the larger error of D3 on the [10]CPP–C70 complex.



Chapter 6

Balancing semilocal and nonlocal correlation

This chapter presents a numerical analysis of the general range-separation approach
between KS-DFT and vdW methods that served as a basis for Chapter 3. It shows
that even though the eàective range of semilocal XC functionals is not known explic-
itly, meaningful information about it can be obtained from the dependence of the
DFT+vdW energies on the range-separating parameters of the vdWmethods. This ap-
proach rationalizes the choice of the underlying XC functional in a DFT+vdWmethod,
which enables unbiased development of new vdWmodels—the topic of Chapter 8.
The analysis stands on a large number of DFT and vdW calculations performed with
diàerent programs that are documented in detail in a public git repository (Hermann
and Tkatchenko).

6.1 Ambiguity in range separation

As discussed in Section 3.1, the DFT+vdW approach is based on the range separation of
the XC energy, where a semilocal or hybrid KS-DFT and a vdWmethod cover the short-
and long-range parts of the XC energy, respectively. In nonmetals, the exchange energy is
short-ranged and the long-range XC energy consists only of the correlation energy. ¿e
rest of Chapter 3 then reviewed di�erent methods for the long-range correlation energy,
in most of which the range-separation is explicitly built-in via some distance-dependent
function. But as is clear from the brief exposition in Section 2.7, the range-separation is not
explicit in semilocal (hybrid) XC functionals (there is no sense of interelectronic distance
in them), but is an implicit and relatively uncontrolled result of their construction and
of the general shape of atomic and molecular densities. As a result, the range-separating
functions of the vdW methods cannot be guided theoretically by the behavior of the
semilocal functionals, but become essentially empirical “damping” functions, whose
parameters are �tted to reproduce accurate binding energies or other derived properties
when combined with a particular semilocal functional.

In equilibrium, the contribution to the interaction energy of both the KS-DFT and

81
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the vdW parts are substantial in most systems, and the empirical approach to the range
separation results in a state where it is not clear if a particular success (or failure) of a
particular DFT+vdW combination is a result of the semilocal functional, the vdWmethod,
or the system-dependent compatibility between the e�ective ranges of the two. In an
attempt to shed light on this problem, this chapter presents a detailed numerical study
of the interplay between the short-range and long-range contributions to the XC energy
on a large spectrum of systems. ¿e central part of the analysis is concerned with the
dependence of the errors in binding energies of di�erent DFT+vdW combinations on the
respective range-separation parameters of the vdWmodels.

6.2 Choice of tested methods and systems

To get as much insight as possible from a numerical analysis, we selected a broad range
of semilocal (hybrid) functionals, vdW methods and vdW-bound systems. ¿e XC
functionals studied in this work span �rst four rungs of the “Jacob’s ladder of density
functionals” (Perdew and Schmidt, 2001). ¿e �rst rung is occupied by a single functional,
the LDA. Although binding curves calculated with the LDA have incorrect asymptotic
behavior and decay too fast, as expected from a local functional, equilibrium binding
energies of vdW systems are usually strongly overestimated by LDA. ¿is spurious binding
is not caused by the correlation part of LDA, but by the exchange part. ¿is feature is then
shared in smaller degree by the next three rungs of the Jacob’s ladder as well. Whereas
the HF exchange energy is always a repulsive contribution to the noncovalent interaction
energy, many semilocal XC functionals bind noncovalent systems to a certain, usually
insu�cient degree via their exchange part. ¿is is caused by the implicit cancellation of
errors between exchange and correlation in KS-DFT, and is re�ected in the fact that most
of the literature on the topic of vdW interactions and XC functionals is concerned with
exchange, not correlation functionals (Zhang et al., 1997; Peng et al., 2016).

¿e second rung covers the GGA functionals. It has been in this class of functionals,
wheremost of the search for semilocal functionals with an “appropriate” XC range has been
done, and mostly within the context of the vdW-DF nonlocal functional, because of the
di�culties with the adaptation of its e�ective range. Several special-purpose functionals
designed to combine well with long-range correlation models were developed, ranging
from completely new constructions (Pernal et al., 2009; Wellendor� et al., 2012), to
recombinations of older forms (Cooper, 2010; Hamada, 2014; Berland and Hyldgaard,
2014), to simple reparameterizations of standard functionals (Zhang and Yang, 1998;
Klimeš et al., 2010, 2011). (An “ideal” exchange functional in this regard would be di�erent
from the exact exchange, because it would still contain a part of the short-range post-HF
correlation that is not covered by GGA correlation functionals.) All of these functionals
perform well for vdW-bound systems (when combined with a vdWmodel), but not much
is known about their accuracy for other systems, preventing them from becoming general



6.2. CHOICE OF TESTED METHODS AND SYSTEMS 83

Figure 6.1 ∣ Range of functionals. Binding energy curves of a stacked uracil dimer (top) and a
C60–buckycatcher complex (bottom) with diàerent XC functionals. The circles denote minima,
the black circle corresponds to a reference value (see text). PBE+MBD is shown as an example
of a method with the correct (algebraic) asymptotic behavior.
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methods. Here, we test the most popular general-purpose GGA functional, PBE.
In the context of vdW interactions, considerably less attention has been paid to the

to the third rung, the meta-GGA functionals, from which we include two functionals in
our study. ¿e meta-GGA of Tao, Perdew, Staroverov, and Scuseria (2003) (TPSS) shares
many aspects in its construction with the PBE functional, and also behaves similarly in
description of noncovalent systems. In contrast, the “strongly constrained and appro-
priately normed” (SCAN) functional of Sun et al. (2015) is a substantial departure from
PBE. It is a recent development, which is intended to replace PBE for all purposes, with
promising results across a broad range of systems in chemistry and physics, in many cases
reaching the accuracy of hybrid functionals at a fraction of their computational cost (Sun
et al., 2016). SCAN is still only a semilocal functional, however, and does not describe
long-range electron correlation, resulting in a lack of long-range vdW interactions, as
illustrated in Figure 6.1.

¿e fourth rung of functionals contains GGAs andmeta-GGAs with partial admixture
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of exact exchange. As in the HF method, exact exchange does not contribute to the vdW
attraction at any distance, but substantially improves accuracy of (meta-)GGAs for many
chemical problems. Here, we study the hybrid GGAs PBE0 (Perdew et al., 1996b; Adamo
and Barone, 1999) and B3LYP (Becke, 1993). We also analyze SCAN0 (Hui and Chai,
2016), a PBE0-like version of SCAN with 25% of exact exchange. We do not include
the � h-rung functionals, such as the random-phase approximation or double-hybrid
functionals, because they already contain long-range electron correlation by construction,
at the price of much increased computational cost.

We chose three vdWmethods to pair with the semilocal functionals, motivated by
the following idea. ¿e semilocal functionals do not have an e�ective built-in range, but
if a particular DFT+vdW is accurate and general, it can be said that the range of the XC
functional must be complementary to that of the particular parametrization of the vdW
model. Hence, the vdWmodels, for which the e�ective range is known explicitly through
their range-separation functions, can serve as a probe of the range of the XC functionals.
However, since the range separation in these e�ective models (both semilocal XC and
vdW) is certainly not isotropic and is system dependent, judging the e�ective range from
a single vdWmethod could lead to a bias. To avoid this potential issue, we chose three
vdWmodels with su�ciently di�erent damping mechanisms.

In MBD (Section 3.3.6), the range-separation is controlled by a single sigmoid-shape
damping function in (3.50), whose range is controlled via a single parameter, B ≡ βMBD,
A = 6, that determines at which fraction of a distance that is a sum of vdW radii of
two atoms is the dipole potential damped to 50%. In the VV10 nonlocal functional
(Section 3.3.4), the parameter D = 3

2
3 π

5
6 bVV10/2 in (3.34) controls the rate at which the

e�ective resonance frequency of the local dipole response at two points increases (and
hence polarizability decreases) as the points get closer to each other. Both MBD and
VV10 are functionals of the electron density, and likewise, the damping mechanism is
density-dependent. In contrast, the D3 method (Section 3.3.5) depends only on the local
geometry of the atomic structure around each atom, and unlike in MBD the atomic vdW
radii are �xed and do not depend on the electron density. ¿e particular form of damping
in D3 received some attention (Grimme et al., 2011; Schröder et al., 2015; Smith et al., 2016;
Witte et al., 2017), and of the two main variants (both based on atomic vdW radii), the
original one is similar to that used in MBD, whereas the other, originally from Johnson
and Becke (2006) (BJ), has a di�erent limiting behavior at short range. Since our goal here
is to cover a broad range of vdWmodels, we use the BJ damping for its distinction from
the damping used inMBD. ¿e BJ-damped D3method uses three parameters that control
its short-range behavior: sD38 controls global mixing of the dipole–quadrupole term (which
is inherently short-ranged due to its faster algebraic decay compared to the dipole–dipole
term), and the closely related aD31 and aD32 control the onset of the dipole–dipole term
(aD31 scales vdW radii, aD32 o�sets them).

Whereas the vdWmodels have an explicit correlation range, the range of semilocal



6.3. BASIS-SET CONVERGENCE OF META-GGA FUNCTIONALS 85

density functionals is only implicit, and the combined DFT+vdWmodels are therefore
constructed by optimizing the range separation in vdWmodels against some benchmark
properties, usually binding or lattice energies. Several benchmark sets of vdW-bound
systems have been established, of which we use predominantly three: the S66 set of 66
smaller organic dimers (Řezáč et al., 2011), the X23 set of 23 molecular crystals (Otero-
de-la-Roza and Johnson, 2012; Reilly and Tkatchenko, 2013), and the S12L set of 12 large
supramolecular complexes (Grimme, 2012). ¿e S66 set is especially useful here, because
each of the 66 dimers is given at 8 intermolecular distances distributed around the equilib-
rium distance, enabling at least partial separation of the short- and long-range behavior
of a method.

Here, we shortly discuss only the expected accuracy of the reference values in the
benchmark sets, and refer the reader to the cited works for additional details. ¿e S66 set
was benchmarked with the coupled-cluster method with single, double, and perturbative
triple excitations at the complete basis-set limit (CCSD(T)/CBS), a method that has been
itself benchmarked to give at least an order-of-magnitude more accurate binding energies
than any of the DFT+vdWmethods investigated here (Řezáč and Hobza, 2013). ¿e X23
benchmark lattice energies were obtained from experimental sublimation enthalpies by
subtracting the zero-point vibration energy, with the estimated uncertainty of 1 kcal/mol.
¿is was recently con�rmed by CCSD(T) calculations of the benzene crystal (13.4 kcal/mol
compared to the benchmark value of 12.4 kcal/mol) (Yang et al., 2014). ¿e S12L reference
binding energies were obtained by subtracting calculated solvation and zero-point energies
from experimental free energies of association. Such a procedure has inherent uncertainty
of several kcal/mol, which is supported by recent accurate di�usion quantum Monte
Carlo calculations of the C70–buckycatcher complex (30 ± 1 kcal/mol compared to the
benchmark value of 27.5 kcal/mol) (Zen et al., 2016).

6.3 Basis-set convergence of meta-GGA functionals

Before delving in the analysis, we shortly discuss the issue of converging the KS-DFT
binding energies with respect to basis-set size. Table 6.1 shows the binding energy of
stacked uracil dimer (Figure 6.1) calculated with the PBE and SCAN functionals, with
and without counterpoise correction, and with several di�erent basis sets. With the
correlation-consistent basis sets of Dunning (1989), the rate of convergence of both the
PBE and SCAN functionals is similar. With counterpoise correction, anything better than
cc-pVDZ has acceptable accuracy (∼0.2 kcal/mol), and without counterpoise correction,
only aug-cc-pVQZ gives such level of accuracy. On the other hand, the numerical basis
sets of FHI-aims give su�cient accuracy for PBE without counterpoise correction already
on the “tight” level, which is an order of magnitude smaller than aug-cc-pvQZ. Yet for
SCAN, the “tight” level without counterpoise correction is insu�cient, and only addition
of the di�use functions from the tier-4 group leads to converged binding energies. ¿e
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Table 6.1 ∣ Dependence of PBE and SCAN binding energies (kcal/mol) of parallel-stacked

uracil dimer on the basis-set size.

PBE SCAN
basis seta ∆CP

b E (CP)int
c ∆CP E (CP)int

cc-pVDZ 3.54 −2.07 2.88 −7.07
cc-pVTZ 1.42 −2.63 1.12 −7.82
cc-pVQZ 0.62 −2.72 0.43 −7.93
aug-cc-pVDZ 0.96 −2.70 1.02 −7.97
aug-cc-pVTZ 0.51 −2.75 0.54 −7.97
aug-cc-pVQZ 0.07 −2.76 0.00 −7.98
tight 0.18 −2.69 1.19 −7.92
really_tight 0.19 −2.68 0.90 −7.92
tight+tier-4 −0.29 −2.77 −0.17 −7.99

a“(aug)-cc-pVXZ” are the correlation-consistent X-zeta basis sets of Dunning (1989), the “tight”
basis sets are the default sets of the FHI-aims program (Blum et al., 2009), “+tier-4” denotes the
addition of all available basis functions. bDiàerence between the counterpoise corrected and

uncorrected binding energies. cCounterpoise corrected binding energy.

use of the “tight” basis set leads to systematic overbinding of all vdW bound systems. ¿is
behavior is shared by the M06 family of meta-GGA functionals, but not by the TPSS
functional. Taking into account the results presented below, the slow convergence of the
binding energy can be associated with meta-GGA functionals that take advantage of the
abnormal behavior of the density in density-tail overlaps (small density, small reduced
gradient, large electron delocalization function) to bind vdW systems more strongly in
equilibrium.

6.4 Range-separation on benchmark datasets

¿e performance of approximate DFT+vdWmethods on a given benchmark dataset is
evaluated by comparing calculated binding energies, Ei , to the reference values, Erefi , yield-
ing a distribution of errors, ∆Ei = Ei − Erefi . Since the interaction energies in vdW systems
span orders of magnitude, we use relative errors, ∆rEi = ∆Ei/(−Erefi ) (assuming Ei are
negative). ¿e comparison of error distributions between di�erent methods and systems
is aided by introducing various statistical measures. Two popular measures are the mean
absolute error (MAE),∑i ∣∆Ei ∣/N , and mean absolute relative error (MARE),∑i ∣∆rEi ∣/N ,
which both individually serve well as a single numerical indicator of performance, but do
not provide much insight into the actual error distributions. Instead, we use the mean
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Figure 6.2 ∣ Distributions of relative errors in binding energies on the S66 set of several

DFT+MBD combinations. The distributions are displayed as box-and-whisker plots: a box
shows the quartiles and whiskers represent the rest of the distribution, except for outliers that
are more than 2.5-fold the interquartile distance from the box, which are shown individually.
The x-axis labels denote the functional and the value of the MBD range-separation parameter,
βMBD. The blue–red spectrum encodes the scaling, q, of the respective equilibrium distances
of individual complexes. The green numbers indicate the mean absolute error (kcal/mol) for
q = 1. The values of βMBD were selected as follows: β-values shown for PBE, PBE0, B3LYP, SCAN*
(see text), and M06-L optimize MARE around q = 1; β = 1.4 for LDA optimizes MARE for q = 2;
and for SCAN and all q, β = 1.09 optimizes SDRE, and β = 1.16 optimizes MRE.
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relative error (MRE),∑i ∆rEi/N , and the standard deviation of the relative errors (SDRE),

SDRE =
1
N

√

∑
i
(∆rEi −MRE)2

¿is enables us to study both the systematic error of a method (overall underbinding
or overbinding), represented by MRE, as well as the “statistical” error (how consistent a
method is in terms of the range of errors), represented by SDRE.

To study the range of the density functionals LDA, PBE, TPSS, SCAN, PBE0, B3LYP,
SCAN0, andM06-L, we evaluated their combinations with the vdWmethodsMBD, VV10,
and D3 at a range of their respective range-separation parameters, on the benchmark sets
S66, X23, S12L, and other sets not discussed in this text. We present a subset of these
results below in Figures 6.2 and 6.4, while the full data, obtained with FHI-aims (Blum
et al., 2009) and Quantum Espresso (Giannozzi et al., 2009; Hamann, 2013), as well as
computational details and other resources, are shared via a Git repository (Hermann and
Tkatchenko).

¿e case of the S66 set and di�erent DFT+MBD combinations (Figure 6.2) shows that
summarizing the error distributions into a single number such as the mean absolute error
reduces the method comparison to a one-dimensional classi�cation, whereas comparing
the full distributions in fact reveals distinct patterns speci�c to individual functionals. Of
the tested functionals, LDA is the only one that systematically overbinds S66 at equilibrium
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even without any long-range correction. At the same time, when the equilibrium distances
are scaled by 2, LDA predicts essentially no binding. In this regard, although LDA binds
vdW systems in equilibrium (too) strongly, it is very short-ranged. ¿e tail behavior can
be �xed accurately by MBD with βMBD = 1.4, but the short-range overbinding cannot be
compensated by a vdW energy term. ¿e increased overestimation of the XC energy with
decreased distance then leads to the well-known underestimation of binding distances
by LDA. Already LDA thus illustrates that the degree to which a (semi-)local functional
binds vdW systems is in general not a goodmeasure for howwell-suited it is for a generally
applicable DFT+vdWmethod.

In contrast, both PBE and PBE0 are strongly underbinding S66 at all intermolec-
ular separations, but with MBD and appropriate range separation (βMBD ≈ 0.83), the
resulting PBE+MBD and PBE0+MBD methods are well balanced, with symmetric er-
ror distributions, MAE independent of distance, and SDRE monotonously increasing
at shorter distances. ¿e admixture of exact exchange decreases SDRE from 10.2% with
PBE to 8.7% with PBE0 at equilibrium, but in general has only a small e�ect. Another
hybrid GGA, B3LYP, behaves as a true opposite of LDA, being at the same time very
repulsive, yet quite long-ranged. Even with a fairly short-range correlation covered by
MBD (βMBD ≈ 0.7), B3LYP+MBD still underbinds at equilibrium, and perhaps more
surprisingly at longer distances. In contrast to PBE/PBE0, the distributions are highly
asymmetric, with underbound outliers being mostly the hydrogen-bonded complexes.

With SCAN, optimizing forMREand SDRE leads to somewhat di�erent values of βMBD,
1.09 and 1.16, respectively, and correspondingly di�erent error distribution pro�les. Both
of these β values are substantially larger than that for PBE, demonstrating the potentially
longer range of SCAN. When SDRE is optimized, SCAN+MBD has consistently narrower
error distributions compared to PBE+MBD across all distances, with a slight systematic
overbinding that grows with decreasing distances. When MRE is optimized, the pro�le
of SCAN+MBD is similar to that of PBE+MBD, with smaller outliers. Adding exact
exchange in SCAN0 (not shown) has even smaller e�ect than in PBE0, making the SCAN
and SCAN0 error distributions almost indistinguishable.

Finally, M06-L requires only slightly larger amount of long-range correlation than
SCAN, and most of the complexes from the S66 set are described well around equilibrium.
But several outliers are strongly overbound, and all complexes are overbound at longer
distances, which is in line with previous studies (Goerigk, 2015). Both issues may stem
from the fact that the heavily �tted M06-L is parametrized also on the S22 set, a smaller
version of S66, but S66 contains additional complexes and out-of-equilibrium complexes
for which M06-L was not “trained”.

To test the universality of the observations on the S66 set, we have repeated the same
analysis for the X40 set of dimers of small halogenated hydrocarbons (Figure 6.3). ¿e
overall errors are larger, because of the di�culty of modeling the polarizability of atoms
with large partial charge, however, the general trends are similar to those found on the
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Figure 6.3 ∣ Distributions of relative errors in binding energies on the X40 set of several

DFT+MBD combinations.
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See Figure 6.2 for caption.

Table 6.2 ∣Overall performance of DFT+MBDmethods.

functional MAREa MREb βMBD,c

S66 X23 S12L S66 X23 S12L

LDA 32% 21% 12% −31% −17% 0.1% ∞
B3LYP 15% 8.0% 12% 5.2% −2.4% 2.5% 0.64
PBE 8.4% 6.1% 5.3% −2.1% −2.6% −0.4% 0.84
PBE0 7.6% 5.4% 6.5% −1.1% −1.7% −4.4% 0.85
SCAN 4.8% 8.4% 11% −3.0% −7.7% −10% 1.12
M06-L 9.2% 16% 29% 2.4% −16% −28% 1.20

aMean absolute relative error. bMean relative error. cRange-separation parameter of MBD
minimizing MARE.

S66 set.
Of the tested functionals, PBE and SCAN (or their hybrid versions) show a potential

to work as general balanced DFT+vdW methods. To rule out the possibility that this
conclusion about the two functionals is speci�c to MBD, we studied how MRE and SDRE
of their combinations withMBD,VV10, andD3 depend on the respective range-separation
parameters (Figure 6.4). Comparing the results for the S66 set shows that all three vdW
models have similar behavior, including the increased ambiguity in optimizing either for
SDRE or MRE on the X23 set in the case of SCAN. It is the case even for D3, which is
potentially more �exible when adapting to a functional thanks to its three parameters.
Furthermore, Figure 6.4 shows that whereas the optimal range separation of the vdW
models is shared across di�erent system types for the PBE functional, this is not the
case for SCAN, for which the XC range seems to grow with the system size. All these
observations are true for all three vdWmodels. Summarized results for other functionals
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Figure 6.4 ∣Dependence of means (MRE) and standard deviations (SDRE) of relative errors

in binding energies on range-separation parameters. Three long-range correlation models
with their respective parameters are shown: (a) MBD with βMBD, (b) VV10 with bVV10, and (c)
D3 with aD32 . Density functionals correspond to columns, and benchmark sets to rows within
each subplot. Only the equilibrium-distance conägurations of the S66 set are used. SCAN*
denotes two reparameterizations of the SCAN functional discussed in the text. The vertical
dotted lines show where MRE equals to zero or SDRE reaches minimum. For DFT+D3, two
choices are shown of the two other range-separation parameters in D3: aD31 and sD38 .

a

10%
0%

10%

PBE SCAN

S66

SCAN*
(dx = 1.6)

10%
0%

10% X23

0.8 1 1.2
MBD

10%
0%

10%

0.8 1 1.2
MBD

0.8 1 1.2
MBD

S12L

MRE SDRE

b

10%
0%

10%

PBE

S66

SCAN

10%
0%

10% X23

10 20
b VV10

10%
0%

10%

10 20
b VV10

S12L

MRE SDRE

c

10
0%

10%

PBE

S66

SCAN

10
0%

10% X23

2 8
aD3

2

10
0%

10%

2 8
aD3

2

S12L

a1 = 0.3, s8 = 0.8
a1 = 0.55, s8 = 0

are presented in Table 6.2.
SCAN has been previously combined with VV10 by Peng et al. (2016) and with D3 and

VV10 by Brandenburg et al. (2016). ¿e obtained optimal values of bVV10 were 15.7 and
14.0, respectively, and optimal parametrization of D3 was found to be sD38 = 0, aD31 = 0.54
and aD32 = 5.4. From the results in Figure 6.4, this corresponds to an optimal MRE on S66
for SCAN+VV10 (but systematic overbinding on X23 and S12L), and to optimal statistical
error (SDRE) for SCAN+D3, leading again to some degree of systematic overbinding.
Brandenburg et al. (2016) associated this tendency mainly with hydrogen-bonded systems,
which is in line with the observed overbinding of various ice structures by SCAN (without
any vdW correction) (Chen et al., 2016).

Peng et al. (2016) argued that shi ing the range separation between a semilocal func-
tional and a vdWmodel towards the latter is bene�cial. Such a shi could also avoid some
of the problems that long-range correlation models need to deal with at short range, such
as the quadrupole interaction. Our results con�rm that such a shi is indeed possible in
principle, but with the caveat that the description of the intermediate range by the density
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Figure 6.5 ∣ Distributions of relative errors in 3-body interaction energies on the 3B-69 set.

The box-and-whisker plot is of the same kind as Figure 1 in the main text. The “zero hypothesis”
corresponds to a method which always gives zero 3-body interaction energy.
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functional must be balanced and independent of system size.

6.5 Three-body interactions

¿e total lattice energy of amolecular crystal can be decomposed into pairwise interactions
between molecules, interactions between triples of molecules, etc. Going up to four-body
terms, Yang et al. (2014) was able to calculate the lattice energy of the benzene crystal within
the accuracy of 0.8 kcal/mol. Previously, Tkatchenko and von Lilienfeld (2008) found
that many popular semilocal functionals overestimate the 3-body interaction energies in
rare-gas dimers and crystals.

In the context of our present study, the 3B-69 dataset of 3-body interaction energies
consists of three trimer structures from eachmolecular crystal from the X23 dataset (Řezáč
et al., 2015). In principle, this set could provide yet another independent (and more sensi-
tive) measure of the range separation. Interestingly, it turns out that the 3-body interaction
energies are by far dominated by the short-range contribution from the semilocal func-
tionals rather than the long-range 3-body terms, both with the many-body dispersion
method as well as the 3-body correction of the D3 method. Figure 6.5 presents errors in
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Figure 6.6 ∣ Binding energies of graphene-æake dimers. The individual data points corre-
spond to (increasing in size) benzene, naphtalene, pyrene, coronene, two larger circular hexag-
onal æakes (shown), and graphene. All dimers are in a parallel-displaced conäguration, as cut
out from a graphite crystal without any geometry relaxations. The plotted quantity is binding
energy with respect to the LDA binding energy, per carbon atom. The (inänite) number of
atoms in graphene is set arbitrarily to 500.
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the 3-body interaction energies of the 3B-69 set calculated with the semilocal functionals
studied above. Compared to a hypothetical method with zero 3-body interaction ener-
gies, most functionals give substantially better estimates, the only exception being M06.
However, the performance on the 3-body interactions does not seem to correlate with
the performance for the total binding energies. ¿e LDA, PBE, and SCAN functionals
perform comparably, whereas the B3LYP functional, which is relatively bad on the total
binding energies gives very accurate 3-body interaction energies.

6.6 System-size scaling

To gain further insight into the range of the functionals beyond statistical analysis, we
calculated the binding energies of a series of graphene-�ake dimers ranging froma benzene
dimer to a graphene bilayer using DFT without any long-range correction (Figure 6.6).
We consider LDA as a reference short-range functional, accounting for any potential edge
e�ects, and PBE+MBD as a reference full-range method. ¿e functionals B3LYP, PBE,
and TPSS have a similar behavior to LDA, with the binding energies being o�set only
by a constant. In contrast, the SCAN and M06 show a much stronger dependence on
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the system size, both at the small and large ends of the spectrum. ¿e di�erence in the
o�set to LDA between benzene dimer and graphene is 60% for M06 and 35% for SCAN
with respect to PBE+MBD. ¿e ability to capture at least partially this system-size e�ect
could be seen as advantageous, but it is unfortunate for developing DFT+vdWmethods,
because it breaks the core assumption that the functionals behave as short-range models
of the electron correlation. A er all, these functionals are semilocal by construction and
the fact that they are sensitive to this strongly nonlocal environment is contradicting this
semilocality. Furthermore, there are no known nontrivial exact constraints on the XC
energy of overlapping density tails, and so the behavior of current semilocal functionals
for such systems is essentially an uncontrolled result of the overall functional design,
which complicates any development of “farsighted” density functionals.

Both SCAN and M06 are meta-GGAs, but so is TPSS, which does not show this
sensitivity. We speculate that in the case of SCAN, this sensitivity is caused by the particular
parametrization of its dependence on the dimensionless electron localization parameter, α.
SCAN uses the density parameter α in (2.45) directly by interpolating and extrapolating
forms constructed for α = 0 and α = 1, using the following function:

f (α) = exp(−c1xα/(1 − α))θ(1 − α) − dx exp(c2x/(1 − α))θ(α − 1) (6.1)

where θ is the Heaviside step function, and c1x = 0.667, c2x = 0.8, and dx = 1.24 are three
of the total seven parameters in SCAN which are determined by �tting to properties
(norms) of several model systems. ¿e values of α typically count in single �gures within
the electronic valence shells and decay slowly to zero with distance from the electronic
system, while crossing α = 1 at some point (Sun et al., 2013; Becke and Edgecombe, 1990).
Among meta-GGA functionals, SCAN has a relatively wide plateau around α = 1 (due
to Eq. 6.1) (Loos, 2017), where the enhancement factor, Fx, is equal to 1, the value for the
uniform electron gas. ¿is results in spatial regions in the electron density tails (dominated
by HOMO, the highest-occupied molecular orbital) that are described with a uniform-like
functional instead of the more appropriate single-orbital form of α ≈ 0. ¿is can lead
to sudden spikes in the exchange-correlation potential fairly outside the spatial regions
where covalent bonding occurs (Brandenburg).

6.7 SCAN reparametrizations

In the series of graphene-�ake dimers, the electronic gap (calculatedwith SCAN) decreases
from 4.7 eV for benzene dimer to 0.9 eV for graphene bilayer, which makes the density
tail decay slower with increasing system size. Because the α = 1 behavior of SCAN makes
it quite sensitive in the density tails, whose overlap also encodes the vdW bonding on
the electron-density level, it only makes sense that SCAN is able to extract the nonlocal
information about the system size via the decreasing electronic gap. ¿is mechanism
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Figure 6.7 ∣ Interpolation and extrapolation used in the SCAN exchange functional. The
äxed points that are inter- and extrapolated are α = 0 and α = 1. The shape of the function is
controlled with three parameters, c1x = 0.667, c2x = 0.8, and dx = 1.24 (original values).

0 1 2

1

0

1

f(
)

original
dx = 1.6

could be also partially responsible for the discrepancies in optimal range separation for
SCAN observed on the S66, X23, and S12L sets (Figure 6.4).

To check this hypothesis, we constructed several reparameterizations of SCAN and
tested them on these benchmark sets. We focused on the three parameters in Eq. 6.1
because their values are determined weakly, having been �tted only to system-speci�c
rather than universal norms. We found that the overall XC range of SCAN can be changed
substantially bymodifying either of these parameters, without any regression in the overall
performance of the SCAN+vdWmethods. However, the systems-size dependence of the
optimal range separation for SCAN is not a�ected by either of them. For illustration,
Figures 6.2, 6.4, and 6.6 show results for a SCAN reparametrization with dx changed from
1.24 to 1.6, which minimizes the overall error on S66 and reduces the XC range of SCAN
(optimal βMBD of 0.97). Figure 6.6 clearly shows that the reparameterization does not
change the sensitivity of SCAN in the density tails, as it only shi s the binding energy in
graphene �akes by a constant.

Our toy reparameterization of the SCAN functional illustrates that the XC range
of even a very sophisticated functional can be changed by a single parameter, whose
value is not �xed by any physical constraint. At the same time, it shows that a more
subtle behavior of the XC range such as the system-size dependence is likely a result
of the inherent functional form rather than a speci�c value of a numerical parameter.
Furthermore, we did not evaluate any other properties besides vdWbinding, and it is quite
possible that the new parameter values would introduce regressions for other systems. To
give a true alternative parametrization, the original �tting procedure would need to be
performed with an additional constraint on vdW binding, perhaps expressed via a single
simple system, which is beyond the scope of this work.



Chapter 7

Seamless modeling of retarded vdW

interactions

This chapter brieæy discusses the extension of the MBDmethod to distances at which
the änite speed of light cannot be neglected, resulting in the so-called retarded vdW
(Casimir) interactions. Previously, microscopic models of vdW interactions such as
MBD were restricted to the non-retarded regime, whereas the macroscopic continu-
ous models used for description of Casimir interactions could not be used at short
distances and must have been parametrized from experimental data. Here, we show
that these two descriptions can be uniäed within a single framework, which then
enables seamless calculation of vdW energies both at the non-retarded and retarded
(Casimir) regimes. This uniäcation also extends the applicability of the new develop-
ments in Chapter 8, because any improvements in a model of material response can
be directly used in the study of Casimir physics. The results discussed in this chapter
have been published in (Venkataram, Hermann, Tkatchenko, and Rodriguez, 2017). The
Maxwell-equation scattering calculations were done by Prashanth Venkataram, the
DFT and polarizability screening calculations by myself, and the uniäed theoretical
framework is a result of joint work.

¿e ACFD formula and hence the MBD correlation energy in (3.56) originate from
the nonrelativistic quantum mechanics, which assumes that the electromagnetic forces in
the form of the Coulomb law acts instantly over any distance. ¿is limits the applicability
of MBD to systems that are separated by less than hundreds of angstroms, at which point
the time it takes for light to travel between the interacting objects becomes comparable to
the frequency of the electronic oscillations that drive the vdW interactions. (¿e speed of
light, c, in atomic units is approximately 137, the inverse of the �ne-structure constant.)
¿e well-known e�ect of this retardation of the electromagnetic force is the asymptotic
1/R7 attraction that replaces the nonrelativistic 1/R6 power law.

¿e extension of MBD to account for this retardation consists of two steps. First, the
instantaneous dipole operator (eq. 2.54) is replaced with its frequency-dependent retarded
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version, which is proportional to the Green’s function, G0, of the electric �eld,

T̃(R, u) =
4πu2

c2
G0 = (∇⊗∇′ − u2

c2 I)e
−∣r−r′∣u/cv(∣r − r′∣)∣r=R

r′=0
(7.1)

¿is substitution prevents one to perform the analytic integration over frequencies an-
alytically (see eq. 3.56), but otherwise it is a straightforward modi�cation of the MBD
method.

¿e second step is necessary only because of the kind of systems that we want to study.
¿e prototypical systems studied in the context of Casimir interactions consist of small
microscopic bodies such as molecules, and macroscopic objects with nontrivial shapes
or surface gratings (Rodriguez et al., 2011; Woods et al., 2016). ¿e latter are typically
large enough that microscopic description of individual atoms in them is unnecessary
and, furthermore, such large atomic calculations would be unfeasible. As an alternative,
e�cient approaches solve directly the continuousMaxwell equations either with scattering
or �nite-di�erencing methods (Rodriguez et al., 2007; Rahi et al., 2009). ¿is raises the
issue of connecting the continuous and microscopic descriptions. It turns out that such a
connection is naturally enabled by the form of the MBD expression for the interaction
energy. Consider the MBD interaction energy of two bodies, A and B,

Eint = EAB − EA − EB

=
1
2π ∫ ∞

0
duTr ( ln(1 + (αA + αB)T̃) − ln(1 + αAT̃) − ln(1 + αBT̃))

=
1
2π ∫ ∞

0
duTr ( ln((1 + αAT̃ + αBT̃)(1 + αAT̃)−1(1 + αBT̃)−1))

=
1
2π ∫ ∞

0
duTr ( ln((1 + αBT̃(1 + αAT̃)−1)(1 + αBT̃)−1))

≡
1
2π ∫ ∞

0
duTr ( ln((1 + αBT̃A)(1 + αBT̃)−1))

=
1
2π ∫ ∞

0
duTr ( ln(1 + αBT̃A) − ln(1 + αBT̃))

= EB(T̃A) − EB(T̃)

(7.2)

Here, we de�ned T̃A = T̃(1+αAT̃)−1, which is the retarded dipole operator screened by the
electromagnetic response of the body A, and the interaction energy between A and B was
recast as the di�erence in the total energy of B calculated with the bare and screened dipole
operators. ¿e de�nition of T̃A has the form of a Dyson-like equation analogous to that for
the interacting nonlocal polarizability, which points to two equivalent points of view on
the ground-state system of bodies of matter interacting via the electromagnetic force—one
as �uctuating polarizations of the electronic density propagated (in the Green’s function
sense) by the electromagnetic �eld, the other as �uctuations in the electromagnetic �eld
propagated by the electronic response of the matter.
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Figure 7.1 ∣ Retardation eàects in vdW interactions. Interaction energies of a perpendicular
(black) and parallel (red) carbyne wire, fullerene C500, and a protein with a golden surface
calculated with diàerent models are plotted relative to the prediction of a pairwise approxi-
mation as a function of the vertical distance, z. E is the full retarded MBDmethod (eq. 7.2), E0
is the nonrelativistic approximation (c →∞ in (7.1)), and ECP is the so-called “Casimir–Polder
approximation” which approximates the whole microscopic object with a single point. The
inset shows the local power-law asymptote for the plate–fullerene system.

Using the formulation in (7.2), the MBD interaction energy of a macroscopic body
(which can be also a collection of macroscopic bodies) and a set of microscopic objects can
be calculated in the following way. First, one obtains the Green’s function of the electric
�eld in the presence of the macroscopic body by an e�cient continuous macroscopic
method. Second, the screened retarded dipole operator is calculated from the Green’s
function using (7.1). ¿ird, the vdW interaction energy is calculated using the regularMBD
methodwith the screened and bare dipole operators according to (7.2). Figure 7.1 illustrates
the e�ects of the retardation on the interactions of several prototypical systems with a
golden plate. ¿e full retarded MBD interaction energy calculated with 7.2 transitions
between the nonrelativistic approximation (the regular MBD), which becomes exact at
short distances, and the relativistic Casimir–Polder approximation, which models the
microscopic objects as point objects, and becomes exact at large separations. In this regard,
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this uni�ed framework represents a new seamless approach to multi-scale modeling that
enables accurate description of intermolecular interactions at a range spanning several
orders of magnitude.



Chapter 8

Development of a new polarizability functional

¿ework presented in the last chapter is motivated by a development of a uni�ed andmore
general vdWmethod based on theMBD framework (Section 3.3.6). As shown inChapter 5
and elsewhere (Hermann et al., 2017b), many-body e�ects can play a profound role in vdW
interactions, and theMBD approach is thus an appropriate starting point for a general and
accurate vdWmodel. But the parametrization of the harmonic oscillators based on the free-
atom reference values and Hirshfeld-volume scaling used in the MBDmethod has several
disadvantages compared to the local polarizability models of nonlocal density functionals
(Section 3.3.4). First, the Hirshfeld-volume model is based on the assumption that the
electron density of atoms in molecules and materials is not qualitatively di�erent from
isolated atoms, but only contracted to a certain degree by the environment. ¿is is largely
the case in systems without strong charge transfer between atoms, but fails considerably
in ions, where the added or removed electrons change the electron density signi�cantly, as
well as in metals, where the electrons in the conducting bands are completely delocalized
from atoms. Second, the Hirshfeld-volume parametrization provides only two of the three
parameters that specify a harmonic oscillator (for instance (m, q,ω) or (α(0),C6,m)).
Whereas these two parameters, α(0) and ω (or equivalently C6), �x the asymptotic long-
range interaction, they do not give su�cient information to �x the width of the oscillators.
¿is limitation is avoided either by using the (ambiguous) atomic vdW radii to range-
separate the MBD Hamiltonian, or with a semi-classical expression for the oscillator
width in terms of the dipole polarizability, which is used in the dipole-screening equation.
Besides introducing empirical elements into the model, neither of these approaches
can be easily generalized to describe anisotropy in the range separation. ¿ird, the
Hirshfeld-volume scheme is inherently tied to atomic partitioning. If, say, one wanted
to place additional harmonic oscillators on the centers of covalent bonds, the Hirshfeld
partitioning could not support such a model. None of these issues are shared by local
polarizability functionals. ¿ey have no inherent bias towards neutral atoms, the third
oscillator parameter can be obtained from the spatial distribution of the polarizability as
quadrupole polarizability (Section 8.1), and any partitioning of space can be directly used

99



100 CHAPTER 8. DEVELOPMENT OF A NEW POLARIZABILITY FUNCTIONAL

to partition the polarizability and formulate a MBD-like fragment-based method. ¿is
chapter investigates the use of polarizability functionals in formulation of a MBD-based
vdWmethod.

In the next section, we analyze how the local polarizability functional yields quadrupole
polarizabilities of the interacting fragments, and how these can be used to naturally de-
�ne the range separation in the MBD approach. ¿e following section then investigates
the accuracy of existing polarizability functionals across the periodic table, analyzes the
failures, and presents a new functional that is more accurate. ¿e third section deals with
the connection between the polarizability functionals and the volume-scaling approach,
by comparing the scaling power laws predicted by the functionals to reference bench-
mark values. Finally, we present an outlook on how to incorporate a local polarizability
functional into a complete MBD-based vdWmethod.

8.1 Quadrupole polarizability from polarizability functional

¿e quadrupole–quadrupole polarizability of an object (isolated atom, any fragment
of a molecule, a molecule) is an operator that relates the electric �eld on the object
generated by a distant electric quadrupole to the induced quadrupole moment on the
object. Equivalently, it can also be de�ned as a quadrupole response of the object to a
gradient of the electric �eld. For spherically symmetric objects, such as isolated atoms,
the quadrupole–quadrupole polarizability is the lowest nonzero multipole moment of the
polarizability a er the lowest dipole–dipole moment. Here, we derive the quadrupole–
quadrupole polarizability of an object de�ned by a spatial distribution of the dipole
polarizability, which is the model represented by any local polarizability functional.

Consider an object with a local polarizability density, α(r), under an in�uence of an
external electric �eld of the form E(r) = E′r, E′ being the (constant) spatial derivative
of the �eld, ∇iE j(r) = E′ji . ¿e �eld will induce dipole polarization, P = αE′r, and the
resulting induced quadrupole moment,Q, can then be calculated as

Qi j = ∫ dr∆n(r) 12(3rir j − r
2δi j)

= ∫ dr∇ ⋅ P(r) 12(3rir j − r
2δi j) (p.p.)

= ∫ dr 1
2[3(riPj(r) + r jPi(r)) − 2∑mrmPm(r)δi j]

= ∑
kl
∫ dr 1

2[3(rirlα jk(r) + r jrlαik(r)) − 2∑mrmrlαmk(r)δi j]E′kl

= ∑
kl
Ci jklδi jE′kl

(8.1)

Here, Ci jkl is the quadrupole–quadrupole polarizability of the object in Cartesian coordi-
nates.
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All existing polarizability functionals as well as the new ones introduced in this chapter
are isotropic, αi j(r) = α(r)δi j, so that

Ci jkl = ∫ dr 1
2[3(rirlδ jk + r jrlδik) − 2∑mrmrlδmkδi j]α(r) (8.2)

As a result, the quadrupole–quadrupole polarizability can be anisotropic even with an
isotropic polarizability functional, as long as the density of the object is anisotropic.
¿is is in contrast to the coarse-grained dipole–dipole polarizabilities, which are always
isotropic when calculated from an isotropic polarizability functional, regardless of the
spatial distribution of the polarizability.

For isotropic objects (such as isolated atoms), however, both dipole–dipole and
quadrupole–quadrupole polarizabilities are isotropic. ¿is result can be obtained by
setting rir j = δi jr2/3 in the expression above, which is valid if the integral is over the
whole space and the integrand is radially symmetric,

Ci jkl =
1
2(δi lδ jk + δ jlδik −

2
3δklδi j) ∫ dr α(r)r2 (8.3)

Here, C is an isotropic traceless 4th-order tensor as expected. In the solid-harmonic basis
(Section 3.3.1), the corresponding quadrupole polarizability is expressed as

α22,mm′ = δmm′α2 = δmm′ ∫ dr α(r)r2 (8.4)

¿e formula above provides a particularly simple interpretation of the quadrupole
polarizability as a second radial moment of the local polarizability distribution. In this
regard, it encodes information about the spatial distribution of the polarizability density,
and hence can naturally de�ne the width of the oscillators in theMBDmodel. In particular,
the Gaussian width, σ2, (see eq. 3.58) of the particle density of a quantum harmonic
oscillator in ground state is equal to 1/mω = 3α2(0)/4α(0). By substituting (8.4), we get

σ 2 =
3
4
∫ dr r2α(r, u = 0)
∫ dr α(r, u = 0)

(8.5)

Interestingly, this interpretation of the quadrupole polarizability also yields a new
possible de�nition of atomic radii based on polarizabilities. Assume a model of an atom
as a thin spherical shell (representing the valence electrons), where all the polarization
response is concentrated at distance Rpol. It then follows that this radius must satisfy

Rpol =

¿
Á
ÁÀα2(0)

α(0)
(8.6)

¿e magnitude of this “polarizability radius” is between covalent and vdW radii for
most atoms (Figure 8.1). Like vdW radii and unlike covalent radii, the polarizability



102 CHAPTER 8. DEVELOPMENT OF A NEW POLARIZABILITY FUNCTIONAL

Figure 8.1 ∣ Comparison of diàerent deänitions of atomic radii. Covalent radii are taken from
(Cordero et al., 2008), vdW radii from (Tkatchenko and Scheãer, 2009; Bondi, 1964). The atomic
radius deäned from the ratio of the quadrupole and dipole polarizability (yellow) is derived
in (8.6).
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radii decrease within the second row. Like covalent radii and unlike vdW radii, the
polarizability radii of alkali atoms are substantially larger than those of the noble-gas
atoms in the same period, and they grow with increasing atomic number. For palladium,
the only transition-metal element in the set, the polarizability radius is almost equal to
the covalent radius.

8.2 Constructing orbital-dependent polarizability functionals

In this section, we generalize the VV polarizability functional (eq. 3.33) to achieve a
more balanced performance across the periodic table. ¿is is a �rst necessary step if
the Hirshfeld-scaling is to be replaced with a local polarizability functional without
deteriorating accuracy, because the former is exact for isolated atoms by construction.
¿e general form of the VV functional is

αVV[n](iu) =
n

An + B∣∇n/n∣4 + u2
(8.7)
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In the VV functional, A = 1
3 × 4π ≐ 4.2 is set such that the asymptotic interaction of two

spheres of uniform electron gas is reproduced exactly. ¿is value of A can be also derived
from the Clausius–Mossotti equation by taking the dielectric function of the uniform
electron gas. But both these arguments have shortcomings. ¿e local polarizability func-
tional is supposed to take into account only exchange and local correlation e�ects, not the
fully nonlocal electron correlation. If it was used in a many-body vdWmodel to describe
the two uniform-gas spheres, the long-range screening would be described explicitly by
the model, and should not be accounted for in the polarizability functional. Furthermore,
the asymptotic interaction between the spheres was calculated semi-classically (Lucas
et al., 1975) without considering any edge e�ects on the boundary of the sphere where
true electron density would decay continuously outside the spherical positively-charged
compensating background. ¿e Clausius–Mossotti relation between microscopic polariz-
ability and macroscopic dielectric function is valid only for dielectric materials, which the
uniform gas is not, and furthermore, the used Lindhard formula for the dielectric function
is only approximate and for the macroscopic response equal to the classical Drude model.
In this regard, we consider the particular choice of the value of the parameter A rather
arbitrary.

¿e value of the parameter B ≐ 0.0089 was �tted to reproduce reference C6 coe�cients
in the VV functional. But the following simple reformulation of the VV form gives a
clear interpretation of this numerical value. ¿e local resonance frequency, ω2 = An +
B∣∇n/n∣4, is a measure of the electron delocalization—delocalized electrons are more
polarizable. Another measure of delocalization is the kinetic energy, which can be seen
for example from the local expansion of the electron pair correlation function in (2.44).
Correspondingly, the VV functional can be rewritten in terms of the von Weizsäcker
kinetic energy functional,

αVV[n](iu) =
n

An + (B′τW/n)2 + u2
(8.8)

Here, B′ = 8
√
B ≐ 0.75. ¿e ratio τW/n in the density tail of any �nite electronic system

is equal to the ionization potential, while ω measures the local e�ective electronic gap.
¿e value of 0.75 corresponds for instance to the 1s → 2p transition in the hydrogen
atom, which is the lowest-energy transition that contributes to the dipole polarizability.
In this sense, the term An can be considered as an e�ective damping that captures the
contributions of the higher-energy transitions to the polarizability.

To evaluate the performance of the VV polarizability functional for atoms across
the periodic table, we have calculated the dipole and quadrupole polarizabilities and
C6 coe�cients for all atoms up to barium (Figure 8.2). We used KS-DFT with the PBE
functional and a radial atomic solver to calculate the electronic structure. In general,
the VV functional gives reasonable static polarizabilities and C6 coe�cients for p-block
elements, but underestimates them both for d-block metals and even more for s-block
metals. Surprisingly, static quadrupole polarizabilities are predicted quite accurately even
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Figure 8.2 ∣VdWparameters across periodic table predictedwith polarizability functionals.

From top to bottom, the plots are of the dipole polarizability with respect to the Hirshfeld
volume (⟨r5⟩), the quadrupole polarizability with respect to ⟨r5⟩, and the homonuclear C6
coeácient with respect to the square of the Hirshfeld volume. Z is the atomic number. Plotted
are the reference values (black) for the dipole polarizabilities, C6 coeácients (Gould and Bučko,
2016), and quadrupole polarizabilities (Abdalmoneam and Beck, 2014; Schmidt et al., 1979;
Sternheimer, 1970; Reinsch and Meyer, 1978; Sahoo, 2007; Komasa, 2001), as well as the values
obtained from the VV10 polarizability functional and the functionals developed in Section 8.2.
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Figure 8.3 ∣ Polarizability functionals and isolated atoms. The plots show several density-
based quantities in radially symmetric isolated atoms of lithium ([He] 2s1), carbon ([He] 2s22p2),
and titanium ([Ar] 3d24s2) in columns from left to right. (a) Radial plots of the total electron
density (black), r2n(r), and its decomposition into individual electron orbitals. nd (b) The KS
kinetic-energy density of the second kind (black, eq. 2.42), its decomposition into electron
orbitals, and the von Weizsäcker kinetic-energy functional (black, dashed, eq. 2.43). (c) Local
polarizability density from the VV functional aswell as new functionals developed in Section 8.2.
(d) The electron-localization parameter α (eq. 2.45).
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for s-block metals. In terms of a local polarizability model, this can be interpreted such
that the response is estimated correctly in the density tails, which dominate the radial
contribution to the quadrupole polarizability (due to the r2 factor in (8.4)), but severely
underestimated closer to the nucleus for the s- and d-metals. To better understand this
failure, we have analyzed the individual orbital contributions to the electron density
and the di�erent models of the local kinetic energy density (Figure 8.3). Comparison
of the lithium (s), carbon (p), and titanium (d) atoms suggests that the di�erences in
the performance between the three blocks of the periodic table may stem from the fact
that although the valence electrons are responsible for most of the electronic response
(unlike the XC energy, which is dominated by the inner shells), the electron density of the
inner electronic shells shields the valence density. A functional that only “sees” the total
density cannot recognize between the inner and valence shells, which then leads to the
underestimation of the polarizability. ¿is explanation is also in line with the accurate
prediction of the quadrupole polarizabilities, which are mostly determined by the regions
of the electron density beyond the overlap of the valence and inner shells.

To test this hypothesis, we formulate a generalization of the VV functional that applies
a VV-like form to the individual KS orbitals,

αorb(r, iu) = ∑
i

fi ∣ϕi(r)∣2

An(r) + (B′∣∇ϕi(r)∣2/2∣ϕi(r)∣2)2 + u2
(8.9)

Here, fi is the occupation number of the i-th orbital, ∣ϕi(r)∣2 is its normalized electron
density, and ∣∇ϕi(r)∣2/2 its contribution to the KS kinetic energy density of the second
kind, τII (eq. 2.42). To retain the good performance of the VV functional for quadrupole
polarizabilities, we keep the parameter B′ �xed at the VV value, and optimize A = 1.7
by minimizing the mean absolute relative error in the polarizabilities. Figure 8.2 shows
that the new functional, denoted “orb”, improves upon the VV functional for the s- and
d-block elements, while having the same accuracy for the p-block species, both in terms
of the dipole polarizabilities and C6 coe�cients. Compared to the VV functional, the
quadrupole polarizabilities are somewhat overestimated for the s-block elements, and
there are no available reference data for the d-block elements.

¿e improved performance of the orbital-dependent formulation is promising, but
has a theoretical drawback—namely, it is not invariant with respect to orbital rotation.
¿is introduces certain arbitrariness in the model, and makes it computationally more
demanding for evaluation in atom-centered basis sets, because the functional cannot be
formulated in terms of the density matrix. Figure 8.3d shows that the inter-shell regions
are well distinguished by the density parameter α (eq. (2.45)). As a result, the orbital
dependence can be simulated by interpolating between the KS kinetic energy density and
the von Weizsäcker functional, which is accurate in the intra-shell regions,

αkin[n](iu) =
n

An + f (α[n])(B′τW/n)2 + (1 − f (α[n]))(B′τIIKS/n)2 + u2
(8.10)
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Figure 8.4 ∣ Scaling of atomic polarizabilities and C6 coeácients with Hirshfeld volumes.

Z is the atomic number. The power-law scaling is deäned as α(0)/αfree(0) = (V/Vfree)p′ and
C6/C6,free = (V/Vfree)p, with the contracted atoms deäned by conäning with an external po-
tential of the form r2/r3c . The reference values for p and p′ are taken from (Gould, 2016). The
reference constant diàerence p − p′ ≈ 0.615 is accurate to within 0.1 for most elements.
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Wechoose an arbitrary sigmoid function for the interpolation, f (α) = (1+(α−1)/
√
1 + (α − 1)2)/2,

with the switching point at α = 1, the value that α has in the uniform electron gas. Fig-
ure 8.2 shows that this formulation is a promising improvement over the VV functional
for the lighter elements, but the di�erence between the two functionals becomes small
with growing Z.

8.3 Volume-scaling of polarizabilities with polarizability function-

als

¿e polarizability functional should serve as a replacement for the TS volume-scaling
approach in the uni�ed MBD model. ¿e TS model assumes (Section 3.3.5) that the
polarizability of an atom scales linearly with its Hirshfeld volume (p = 1), and the C6
coe�cient with the square of the volume (p′ = 2). On the other hand, Gould (2016)
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Figure 8.5 ∣ The eàect of diàerent conänement potentials on the carbon atom. The radial
quadratic potential (blue) and the radial localized potential at distance corresponding to the
C–H distance in methane (yellow) yield the same change in the Hirshfeld volume.
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calculated accurate polarizabilities and C6 coe�cients of con�ned atoms with TD-DFT
and found that p and p′ depend substantially on the atomic number, and range from 1.75
to 2.75 and from 1.15 to 2.1, respectively. We have calculated the scaling coe�cients p and
p′ as predicted by the polarizability functionals VV and “orb” by evaluating them on the
electron densities of the con�ned atoms (Figure 8.4). In contrast to the polarizabilities
and C6 coe�cients, the volume-scaling behavior is represented rather poorly by the
polarizability functionals both qualitatively and quantitatively. ¿e scaling coe�cients are
underestimated, and the trends within each period of the periodic table are reversed. No
signi�cant di�erence is observed between the VV and “orb” functionals.

To understand better this failure, we investigated the dependence of the scaling behav-
ior on the con�ning potential. Gould tested polynomial potentials of the form rn/rn+1c ,
with n = 2, 3, 4, and found only negligible dependence on n. But these three potentials
are qualitatively similar, and quite di�erent from the con�nement that acts on atoms in
molecules. Figure 8.5 compares the e�ect on the carbon atom of the quadratic con�ning
potential (n = 2) and a localized step potential at a distance corresponding to the C–H
distance in methane. Although the e�ect on the Hirshfeld volume is the same in both
cases (reduction by 20%, c.f. 30% in methane), the latter has a much stronger e�ect. ¿is
is caused by the strong sensitivity of the Hirshfeld volume on the density-tail behavior due
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to the r3 factor. Likewise, the two potentials di�er in their e�ect on the polarizability as
predicted by the polarizability functionals. Whereas the quadratic potential yields p′ = 1.0
(reference value of p′ = 1.4), the localized potential yields p′ = 1.4 (no reference available).
¿e same values are obtained both with the VV and “orb” polarizability functional. Given
the lack of available reference volume-scaling data for other than the polynomial con�ning
potentials, these results have two potential interpretations. Either the true volume-scaling
behavior is indeed independent of the con�ning potential shape, and the di�erence in
the scaling coe�cients predicted by the polarizability functionals is arti�cial. ¿is would
mean that the functionals perform better for more realistic con�nements. ¿e other
interpretation would be that the volume-scaling behavior depends signi�cantly on the
potential shape, in which case the reference results from the polynomial potentials do not
bear much relevance to the con�nement of atoms in molecules. In either case, the large
deviations of the polarizability functionals from the reference values in Figure 8.4 do not
necessarily have implications for the accuracy of the functionals in realistic molecules
and materials.

8.4 Outlook on future development

In this �nal section, we outline the path towards a complete MBD-based vdW model
that uses the polarizability functional developed above. ¿e goal of such a method is to
unify the accuracy of MBD with the electronic-structure universality of nonlocal vdW
functionals (such as VV10).

Partitioning ¿e �rst step in formulating a coarse-grained model is the choice of parti-
tioning of the space into fragments. In the approach based on scaling free-atom
values with Hirshfeld-volume ratios (the TS model), the total polarizability (even
before any screening) depends on the choice of the partitioning, which makes the
choice particularly important. ¿is is the reason why the TS method based on
iterative Hirshfeld partitioning gives signi�cantly better results for ionic system
than regular Hirshfeld partitioning. In contrast, the total polarizability of a system
described by a local polarizability functional is simply an integral over the whole
space, and is independent of a particular partitioning. ¿e choice should therefore
play a less important role, and any atomic partitioning should be su�cient.

Free-atom reference data One of the core advantages of the TS method that makes it
accurate is the use of reference data for free atoms. ¿e orbital-dependent formu-
lation of the VV functional developed above improves its performance across the
periodic table, but still is not exact. A straightforward correction that makes the
model exact for free atoms is to scale the coarse-grained polarizabilities of atoms in
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a molecule with the ratio of the exact and approximate polarizability of free atoms,

αi(iu) =
αi ,free,ref(0)
αi ,free,α[n](0) ∫ drwi(r)α[n](r, iu) (8.11)

Polarizability screening ¿e use of the density gradient in GGA functionals and of the
kinetic-energy density in meta-GGA functionals makes them in general longer-
ranged than the LDA, which uses only the density (Chapter 6), because the density
derivatives encode more detailed information about the electronic structure. Along
the same lines, the local polarizability functionals, which use semilocal density
information, can be expected to capture larger portion of the e�ect of neighboring
atoms on the polarizability than the Hirshfeld-volume scaling that uses only the
electron density. We expect that this may render the short-range polarizability
screening unnecessary.

Range separation As discussed in Section 8.1, the quadrupole polarizabilities that can
be calculated from a local polarizability functional provide a natural measure of the
width of the fragments represented by harmonic oscillators. ¿is enables replacing
the range-separation based on vdW radii with a scheme that is independent of
explicit free-atom reference, which has two advantages. First, it enables the potential
use of �ner partitioning that is only partially based on atoms. For instance, one could
consider placing a fragment on each covalent bond in the system. ¿is would make
the coarse-graining �ner and would limit the errors associated with neglecting
higher multipole moments. Second, the quadrupole polarizabilities calculated
even from an isotropic polarizability functional are in general anisotropic, and
thus naturally lead to anisotropic range separation. ¿is should prove especially
useful for hybrid interfaces, where the electron density on a metallic surface is
strongly delocalized in the directions parallel to the surface, but localized in the
perpendicular direction.
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