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Abstract

Understanding the structure and stability, as well as response properties of molecular
crystals at certain thermodynamic conditions is crucial for the engineering of new molec-
ular materials and the design of pharmaceuticals. A reliable description of the polymor-
phic energy landscape of a molecular crystal would provide an extensive insight into the
development of drugs in terms of the existence and the likelihood of late-appearing poly-
morphs. Furthermore, accurate modeling of low-frequency vibrational spectra would be
important for the characterization of molecular crystal polymorphs. However, an accu-
rate description of molecular crystals is very challenging since many properties highly
depend on the crystal-packing arrangement of the involved molecules and the temper-
ature. The difficulties for computational predictions of molecular crystal polymorphs
lie in the high dimensionality of crystallographic and conformational space, and the
need for very accurate relative free energies. It was shown that accurate lattice energies
can be obtained by using density-functional theory (DFT) calculations supplemented
by a high-level model for long-range van der Waals (vdW) dispersion interactions, such
as the many-body dispersion (MBD) model. Therefore, this thesis utilizes throughout
vdW-inclusive DFT using the MBD and the related pairwise Tkatchenko-Scheffler (TS)
dispersion model and the importance of dispersion interactions is highlighted for several
properties. A hierarchical stability-ranking approach based on the DFT+MBD frame-
work for the final stage of a molecular crystal structure prediction procedure is presented
and analyzed. This approach provides excellent stability rankings over the diverse set
of molecular crystals studied in the latest blind test of the Cambridge Crystallographic
Data Centre. The results suggest that accounting for many-body dispersion effects and
vibrational free energies can be crucial for the description of relative stabilities, espe-
cially for highly polymorphic systems. The presented approach enables the calculation
of reliable structures and thermodynamic stabilities for pharmaceutically relevant sys-
tems, contributing to a better understanding of complex polymorphic energy landscapes.
Furthermore, many first-principles calculations are performed by using fully optimized
structures and free energies obtained within the harmonic approximation, neglecting
the thermal expansion of the studied molecular crystal and further anharmonic effects.
Therefore, this thesis illustrates that the majority of the thermal expansion of molec-
ular crystals can be captured with the used methods by applying the quasi-harmonic
approximation. In addition, we estimate further anharmonic effects on the vibrational
frequencies by utilizing Morse oscillators.
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Chapter 1

Introduction

Molecular crystals are very versatile materials which are used as pharmaceuticals, or-

ganic semiconductors, explosives, and in solid-state reactions [1–8]. These solids are

composed of molecular moieties, which are held together by intermolecular interactions

(non-covalent forces). While these interactions between molecules are generally weaker

than covalent bonds, they govern many properties of molecular crystals. Therefore,

a proper understanding of intermolecular interactions would be crucial for the field of

crystal engineering, in which the primary goal is the design and ultimately the synthe-

sis of new crystalline materials having a predefined arrangement of molecules, enabling

certain properties [9, 10]. This would include an understanding of self-recognition and

self-organization of molecules. Recognition events are often discussed in this context in

terms of specific non-covalent interactions such as hydrogen bonds, halogen bonds, π-π

stacking, dipole-dipole interactions, C–H· · ·π interactions, van der Waals interactions,

etc. [10]. Hence, it is vital to understand and adequately model these different types of

interactions in a balanced and accurate manner.

1.1 Intermolecular Interactions

Between closed-shell molecules we generally distinguish four different intermolecular in-

teractions: electrostatics, induction, dispersion, and exchange repulsion [11]. These

interactions can be understood based on perturbation theory [12]. The static Coulomb

interaction between fixed charge distributions constitutes the electrostatic interaction.

In the picture of a multipole expansion, electrostatics is the interaction between per-

manent multipoles. Therein, the fist term describes dipole-dipole interactions, followed

by dipole-quadrupole, quadrupole-quadrupole, etc. The interaction between permanent

multipoles and induced multipoles is called induction, which is always attractive. Fur-

thermore, we can have an interaction between instantaneously created multipoles and

hence induced multipoles, which is called dispersion. Such an instantaneous multipole

moment can be created by electronic zero-point fluctuations in one molecule, which

induce then a multipole moment in another molecule. Dispersion interactions do not

1



1 Introduction

Figure 1.1: Schematic representation of intermolecular interactions. Reproduced with
permission from Ref. 13. Copyright 2016 John Wiley & Sons, Ltd.

require the presence of permanent multipole moments and are therefore ubiquitous. Fi-

nally, we discuss the exchange repulsion, which is comprised of two different effects. The

first one results from the Pauli exclusion principle, leading to a repulsive force between

electrons having the same spin. The second effect originates due to the fact that elec-

trons are at short intermolecular distances able to move over both molecules (in the case

of a dimer), which results in an attractive interaction. The overall exchange repulsion

is dominated by the first effect and is hence repulsive.

Furthermore, we can also discuss intermolecular interactions in terms of electron den-

sities (see Fig. 1.1) [13]. Electronic structure calculations determine the electron density

of a given system via an iterative approach called self-consistent field (SCF) [14] (see

Chapter 2). Therein, a static density is initialized at the beginning, typically based on

atomic-charge information. This static density can be interpreted as electrostatic inter-

action. With every step in the SCF cycle, the electron densities of the involved molecules

relax due to the surrounding charge distribution. This effect leading to relaxed densi-

ties can be viewed as induction or polarization. When the intermolecular distance is

small and the involved electron clouds overlap, an electron exchange is possible. Due

to the Pauli exclusion principle, our total wave function has to be antisymmetric in

terms of exchanging two electrons having the same spin. Such an adaptation of the

wave function leads to an energy loss and constitutes therefore a repulsive interaction

(exchange repulsion). These three effects constitute the description of intermolecular in-

teractions in the Hartree-Fock method (see Chapter 2) or (semi)-local density functional

approximations (see Chapter 3). In all methods accounting for long-range electron cor-

relation, instantaneous electronic fluctuations are responsible for a further modification

of the electron densities and we can loosely interpret the resulting intermolecular inter-

action as dispersion. Ferri et al. [15] have shown that dispersion interactions can lead

2



to a significantly modification of the electron density and related properties. Note that

generally all discussed intermolecular interactions are closely linked together and they

cannot be unambiguously separated in practice, especially when dealing with extended

systems like molecular crystals. While first-principles methods enable in principle the

accurate description of all discussed intermolecular interactions, many calculations are

still performed by using empirical force fields due to their computational efficiency. How-

ever, empirical force fields are sometimes limited to electrostatic interactions or utilize

simplistic models for describing the dispersion and exchange repulsion. Often, induction

effects are completely neglected, notwithstanding the development of polarizable force

fields [16–18].

The term van der Waals (vdW) interactions can have varying meaning depending

on the community, as discussed by Dobson and Gould [19]. In solid-state physics this

term typically refers to dispersion interactions, while in chemistry it is often also used

for the sum of all intermolecular interactions. In this thesis, we will use the former

definition throughout. Due to their ubiquity and relatively long range, vdW interactions

often dominate the cohesive energy of molecular crystals. However, in the context of

crystal engineering, hydrogen bonds [20] and halogen bonds can also be crucial due

to their directionality at short distances, which could be utilized to control certain

structural motifs during the formation of a crystal. The intermolecular interactions

between hydrogen/halogen-bonded molecules are typically a combination of all discussed

types of interactions, which was analyzed in Refs. 21–23 by utilizing symmetry-adapted

perturbation theory [24, 25].

In case of small molecular dimers, interaction energies can be obtained extremely ac-

curately on a first-principles level by using coupled-cluster approaches [26] or quantum

Monte Carlo [27], which lead to several benchmark databases for non-covalent interac-

tions [28–30]. Such methods can unfortunately only be applied to relatively small sys-

tems due to their tremendous computational cost. For larger systems, density functional

theory (DFT) has emerged as the method of choice due to the continuous development

of better density-functional approximations (DFA) and the inclusion of long-range vdW

interactions via a variety of different dispersion models [31–37]. However, it should be

noted that the description of intermolecular interactions on a vdW-inclusive DFA level

can sometimes be inadequate, for instance in the case of large charge transfer effects or

strong hydrogen bonds [38]. For periodic systems like molecular crystals we need a DFA

which provides a sufficient description of covalent and intermolecular interactions while

still being computationally efficient. The performance of DFA+vdW approaches is often

evaluated by comparing the results with experimental structures and stabilities [39, 40]

and we will discuss the accuracy of several vdW-inclusive DFA approaches in Chapter

4.

3



1 Introduction

1.2 Molecular Crystals

For a given molecular crystal formed by the same molecular moieties, different crystal-

packing arrangements (polymorphs) can be possible. It was recently shown by Cruz-

Cabeza et al. that more than 50 % of compounds within a large dataset of solid form

screenings exhibit polymorphism [41]. Typically, the energy difference between these

solid forms amounts to less than 1 kcal/mol (4.2 kJ/mol) and sometimes it can even

be smaller than 1 kJ/mol [41]. Therefore, methods with an accuracy of at least 1

kJ/mol would in principle be needed in order to ensure a correct description of relative

stabilities of molecular crystal polymorphs. The calculation of accurate stabilities is

further complicated by the fact that molecular crystals are experimentally always grown

and studied at finite temperatures. So far, thermal effects have often been neglected in

first-principles calculations, although they can be responsible for a significant re-ordering

of low-energy polymorphs in terms of their relative stability [42, 43].

Moreover, the crystallization of molecular crystals is not always governed by thermo-

dynamics. Therefore, it is sometimes not possible to crystallize the thermodynamically

most stable form because of kinetic effects [44]. One example would be a thermody-

namically stable crystal structure, in which the molecular conformation is very different

from the one in the gas phase or solution. In such a case, the crystal structure could

simply be inaccessible under the available crystallization conditions. However, the rea-

son for the experimental unavailability of a computationally predicted solid form is often

the fact that the appropriate crystallization experiment has simply not been performed

yet [45]. Furthermore, it is often necessary to look beyond single-component molecular

crystals and consider complex multi-component crystals like salts, co-crystals, hydrates,

and solvates.

In addition, also the modeling of response properties of molecular crystals is quite

challenging. In general, polymorphs can for example have completely different melting

points, solubilities, vibrational spectra, heat capacities, elastic constants, refractive in-

dices, densities, conductivities, vapor pressures and nuclear magnetic resonance (NMR)

chemical shifts [9]. Furthermore, these properties can also highly depend on the temper-

ature, mainly because of the thermal expansion of the crystal. Therefore, knowledge of

the unit cell corresponding to the proper temperature is required for accurate calcula-

tions of vibrational spectra or elastic properties. Such properties are typically calculated

within the harmonic approximation when first-principles methods are used. Hence, an-

harmonic effects are commonly neglected, although they can be significant at room

temperature. [13]

1.3 Prediction of Crystal Structures and their Properties

When properties of already known molecular crystals are studied, the experimentally

determined crystal structure typically serves as starting point for all calculations. How-

ever, the goal would be to predict properties prior to experimental observations. In

such cases, the most stable crystal-packing arrangement of the involved molecules needs

4



to be determined from scratch in a molecular crystal structure prediction (CSP) pro-

cedure before any properties can be calculated. The Cambridge Crystallographic Data

Centre (CCDC) organizes regular blind test for organic CSP methods [46–51]. Therein,

participants try to predict the structure of a molecular crystal based exclusively on

the two-dimensional structural formula of the involved molecule(s). Most approaches

utilize force fields but the ratio of first-principles contributions is growing. One CSP

method was able to correctly predict most target structures during the latest three

blind tests [49–51].

The ability to correctly predict the structures and corresponding stabilities of a

molecular crystal including its often numerous polymorphs without prior experimental

information would also be crucial for the formulation and design of pharmaceuticals [41].

Accurate CSP methods would be able to provide detailed insight into the thermody-

namic polymorphic energy landscape of a given molecular crystal. This would allow an

assessment if the existing structure of a drug candidate is in fact the thermodynami-

cally most stable form at room temperature, or if there is a potential risk of a so-called

late-appearing polymorph, leading to the eventual disappearance of the current form in

the manufacturing process [52]. In such a case, the emerging polymorph might have

a similar stability but potentially different and unwanted properties, such as a lower

solubility. Such an event could trigger a cascade of health-related and financial reper-

cussions. Therefore, the utilization of computational CSP methods in combination with

experimental polymorph screening would offer a solution to this challenge [53]. How-

ever, the computational CSP of molecular crystal polymorphs is extremely challenging

due to the high dimensionality of the conformational and the crystallographic space, in

combination with the need for very accurate relative free energies.

The success and reliability of a CSP method depends on two equally important as-

pects: a sufficiently complete sampling of the crystallographic and conformational space

spanned by a certain molecular crystal, and a sufficiently accurate energetic ranking of

the various low-energy polymorphs according to their relative stabilities at the desired

thermodynamic conditions [51, 53]. In terms of the latter aspect, major advances have

been made during the past several years, resulting in a significant progress in the field

of molecular CSP [43, 54–60]. A typical molecular CSP procedure consists of three es-

sential steps, which are illustrated in Fig. 1.2 and discussed below. For a more detailed

discussion, the reader is referred to Ref. 53.

First, a three-dimensional molecular structure is obtained based on the available

2D structural formula via geometry optimization, leading to the most stable conformer

in the gas phase. For rigid molecules this molecular conformation is typically already

close to the one adopted in the crystal. For flexible molecules, energetically relevant

conformational isomers must also be taken into account. Special care is needed when

intermolecular hydrogen bonds can be formed since this is often accompanied by a

significant change in the molecular conformation. Furthermore, also the possibility of

tautomers should be considered. For instance, it was believed that barbituric acid occurs

only in the keto form. However, a recently discovered polymorph contains the enol

form [61].
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Figure 1.2: Illustration of a typical molecular CSP procedure.

Second, a vast number of different crystal-packing arrangements is generated. Even

for rigid molecules, this is a non-trivial task since one has to sample all important space

groups, unit-cell sizes, and intermolecular orientations. An important parameter for the

complexity of such a crystallographic space sampling is the number of molecules, which

constitute the asymmetric unit of a unit cell (Z ′). Most searches limit themselves to Z ′ =

1 since any increase leads to a tremendous increase in the number of possible structures.

In case of flexible molecules, it is also necessary to consider different torsion angles for

rotatable bonds, leading to a further increase in the computational complexity [62, 63].

Finally, after a sufficient sampling of crystallographic space, the created structures

have to be ranked according to their stability. This is typically achieved by calculating

the lattice energy, which essentially describes the molecular energy gain by forming a

crystal compared to infinitely separated molecules. Due to the tremendous number of

sampled structures, the whole ranking cannot routinely be performed on a first-principles

level. Instead, it is way more efficient to apply a hierarchical procedure utilizing increas-

ingly accurate methods. After an initial stability ranking, a limited amount of structures

is retained, which are subsequently re-optimized and re-ranked with a more accurate

method. The number of structures depends on the obtained energy intervals and the

expected accuracy of the initially applied method.

1.4 Outline

This thesis aims to accurately calculate the relative stabilities of molecular crystal poly-

morphs and related properties on a first-principles level. It was shown that accurate

lattice energies can be obtained for a set of small molecular crystals by utilizing DFT
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calculations supplemented by a high-level model for vdW interactions, such as the

many-body dispersion [35, 64] (MBD) model [40]. Therefore, vdW-inclusive DFT is

applied throughout this thesis utilizing the MBD model as well as the related pairwise

Tkatchenko-Scheffler model [34]. This thesis is structured as follows: First, the basics of

electronic structure theory are discussed in Chapter 2, followed by a short introduction

into DFT in Chapter 3, which also includes a discussion about the used vdW mod-

els. Chapter 4 concludes the theoretical background by first discussing the concept of

lattice vibrations within the harmonic approximation. Furthermore, the anharmonic

Morse oscillator model is described and normal modes are discussed for selected model

systems. The next part of the thesis focuses on the modeling of molecular crystal proper-

ties using vdW-inclusive DFT. Therefore, Chapter 5 gives an overview of state-of-the-art

first-principles modeling approaches and necessary approximations for molecular crystals

illustrated by using a cubic ammonia crystal. Next, Chapter 6 discusses the calculation

of low-frequency vibrational spectra for a purine crystal, highlighting the importance of

thermal expansion and further anharmonic effects captured by using Morse oscillators,

resulting in an improved description of vibrational frequencies in the THz range. In

addition, Chapter 7 illustrates that the used approaches can even provide a qualitative

understanding for time resolved THz-spectroscopy experiments. The third part of this

thesis focuses on organic CSP. We have developed a hierarchical computational proce-

dure based on the DFT+MBD framework intended for the final stage of a molecular

CSP, for which it is crucial to accurately rank an existing set of possible structures ac-

cording to their stability. Therein, we also consider vibrational free energies. Chapter 8

shows the results of our contribution to the latest blind test for molecular CSP methods

organized by the CCDC [51]. Furthermore, our procedure is extended by hybrid DFT

calculations and systematically applied to a different set of initial structures of the blind-

test systems in Chapter 9. Therein, we obtain excellent stability rankings for the quite

diverse set of molecular crystals and predict a possible new form of one system. More-

over, we highlight the importance of many-body dispersion interactions and vibrational

free energies for obtaining accurate stability rankings. In addition, we provide in Chap-

ter 10 a further benchmark and discussion of the approximations and the computational

setup used in our presented stability-ranking approach using a subset of structures from

the previous chapter. Finally, we apply this approach to coumarin crystals in Chapter

11. By now, coumarin has 5 confirmed polymorphs and their relative stabilities were

experimentally obtained. Therefore, this allows us to test the accuracy of our approach

on a quantitative level. We show that our relative stabilities agree within 1 kJ/mol with

the experimental observations. This thesis illustrates that accurate thermodynamic sta-

bilities can now in principle be obtained for pharmaceutically relevant systems, which is

a prerequisite for a better understanding of complex polymorphic energy landscapes.
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Part I

Theoretical Background
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Chapter 2

Electronic Structure Theory

This chapter provides a description of the basics of electronic structure theory. The

discussion builds upon a basic understanding of quantum mechanics, as described for

instance by McQuarrie [65]. For a more detailed description the reader is referred to the

books by Szabo & Ostlund [14] and Piela [66]. The notation used in this chapter follows

mostly the book by Szabo & Ostlund [14]. All equations in this chapter are expressed

in atomic units (see for example page 41 of Ref. 14).

2.1 The Schrödinger Equation

The fundamental equation of electronic structure theory is the Schrödinger equation [67–

70], which enables a complete quantum-mechanical account of systems containing atomic

nuclei (or ions) and electrons. The most general version of the Schrödinger equation is

given by

i
∂

∂t
|Φ(R, r, s, t)〉 = Ĥ|Φ(R, r, s, t)〉, (2.1)

where Ĥ describes the Hamiltonian and Φ is the wave function of the system. In general,

Ĥ is the sum of the kinetic energy operator T̂ and the potential energy operator V̂ .

The wave function Φ depends on all nuclear coordinates R, all spatial coordinates of the

electrons r, the electron spin s, and in this case also on the time t. Further on, we combine

r and s in the electronic coordinates x. Eq. 2.1 is called the time-dependent Schrödinger

equation and therefore describes the time evolution of a given system. Note, that the

Schrödinger equation is only valid in the non-relativistic limit. In order to describe

relativistic effects, the Dirac equation [71] is needed. However, relativistic effects play

only a negligible role for the systems discussed within this thesis, and therefore we will

limit ourselves to the Schrödinger equation.

In most problems of interest to the fields of chemical physics and chemistry, the

studied system is in a stationary state, i.e., all observables are independent of time. In

this case, Eq. 2.1 can be simplified to the time independent Schrödinger equation, given

by

ĤΦ(R,x) = EΦ(R,x). (2.2)
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2 Electronic Structure Theory

The now time-independent Hamiltonian operator Ĥ yields the total energy of the system

E, when it acts on the wave function. A state is stationary if the corresponding wave

function

Φ(R,x, t) = Φ(R,x) exp

(−iEt
~

)
. (2.3)

In this case, the probability density |Φ|2 becomes independent of time

|Φ(R,x, t)|2 = Φ∗(R,x)Φ(R,x) exp

(
iEt

~

)
exp

(−iEt
~

)

︸ ︷︷ ︸
1

= |Φ(R,x)|2. (2.4)

However, note that the wave function itself is not stationary but continually changes its

phase factor, forming a standing wave. Eq. 2.2 is a eigenvalue equation with the wave

function being an eigenfunction of Ĥ. This eigenvalue equation has an infinite number of

solutions and the lowest obtainable energy describes the ground state of the considered

system.

The Hamiltonian operator Ĥ for a molecular or periodic system containing nuclei

and electrons can be written as

Ĥ = T̂e + T̂n + V̂ee + V̂nn + V̂en, (2.5)

with T̂e and T̂n describing the kinetic energy operator of the electrons and nuclei, respec-

tively; V̂ee represents the repulsive interaction between electrons; V̂nn is the repulsive

interaction between nuclei; V̂en describes the attractive Coulomb interaction between

electrons and nuclei. In more detail, Ĥ for a system containing N electrons and M

nuclei is given by

Ĥ = −
N∑

i=1

1

2
∇2

i −
M∑

a=1

1

2ma
∇2

a +
N∑

i=1

N∑

j>i

1

rij
+

M∑

a=1

M∑

b>a

ZaZb

Rab
−

N∑

i=1

M∑

a=1

Za

ria
, (2.6)

where the ordering of the terms is the same as in Eq. 2.5. Indices i and j run over

electrons, while a and b refer to nuclei. The distance between two electrons is described

by rij and the distance between two nuclei by Rab; ria is the electron-nucleus distance.

The respective atomic number enters as Z andma refers to the ratio between the nucleus

mass of nucleus a and the electron mass. The Coulomb interaction between electrons

and nuclei can also be written

−
N∑

i=1

M∑

a=1

Za

ria
=

N∑

i=1

ν(ri), (2.7)

where ν(ri) describes an external potential acting on electron i due to all nuclei.
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2.3 The Born-Oppenheimer Approximation

2.2 The Born-Oppenheimer Approximation

The wave function Φ(R,x) is, even for small molecules, a high-dimensional object and an

approximation is needed to reduce the computational complexity. We can utilize the fact

that atomic nuclei are much heavier than electrons. The smallest and lightest nucleus

consisting of a single proton is already 1836 times heavier than an electron. Therefore,

nuclei move much slower than electrons. Born and Oppenheimer [72] proposed in 1927

that one should consider the dynamics of electrons within the field of fixed atomic

nuclei. This approach is often an excellent approximation and is referred to as the Born-

Oppenheimer approximation. Therein, we neglect the kinetic energy of the nuclei and

the repulsion between nuclei is described as constant. Since the addition of a constant

to an operator does only add to the eigenvalues and does not modify the eigenfunctions,

we do no not consider the nucleus-nucleus repulsion in the Hamiltonian. Therefore, the

remaining Hamiltonian describes electrons moving in the field of point charges. We call

this Hamiltonian the electronic Hamiltonian Ĥelec, which is given by

Ĥelec = −
N∑

i=1

1

2
∇2

i +

N∑

i=1

N∑

j>i

1

rij
−

N∑

i=1

M∑

a=1

Za

ria
. (2.8)

The corresponding Schrödinger equation,

ĤelecΦelec = EelecΦelec, (2.9)

yields the electronic wave function Φelec and the corresponding electronic energy Eelec.

Φelec describes the motion of the electrons and therefore explicitly depends on electronic

spatial coordinates r. However, Φelec also parametrically depends on nuclear coordinates

R, which is also true for Eelec. The parametric dependence means that Φelec will always

be a different function of electronic coordinates for different nuclear coordinates. The

total energy of a system within the Born-Oppenheimer approximation Etot is given by

the sum of the electronic energy and the nuclear repulsion

Etot = Eelec +

M∑

a=1

M∑

b>a

ZaZb

Rab
. (2.10)

2.3 The Pauli Exclusion Principle

As already mentioned in section 2.1, the wave function depends on electronic coordinates

x, which consist of the spatial coordinates r and also the spin s. However, we have not

considered the electron spin yet, since the non-relativistic Ĥelec depends only on r. The

Pauli exclusion principle [73] states that two electrons cannot simultaneously occupy

the same quantum state. This is a result of the so-called antisymmetry principle, which

states that the total electronic wave function must be antisymmetric w.r.t. the exchange
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2 Electronic Structure Theory

of any two electrons

Φelec(x1, . . . ,xi, . . . ,xj , . . . ,xN ) = −Φelec(x1, . . . ,xj , . . . ,xi, . . . ,xN ). (2.11)

Therefore, our exact electronic wave function must not only satisfy the Schrödinger

equation but also the antisymmetry principle.

We specify the electron spin s by introducing the spin functions α(ω) and β(ω) for

spin up and down, respectively. ω refers in this context to an unspecified spin variable.

We only require from the spin functions that they are complete and orthonormal with

∫
dω α∗(ω)α(ω) =

∫
dωβ∗(ω)β(ω) = 1 (2.12)

and ∫
dω α∗(ω)β(ω) =

∫
dωβ∗(ω)α(ω) = 0. (2.13)

2.4 The Wave Function of an Electron

The spatial distribution of an electron is described by a spatial orbital ψ(r) and the

probability P of finding the electron within a volume element dr around the coordinates

r is given by

P = |ψ(r)|2 dr. (2.14)

If we add now the information about the spin to the spatial orbital, the resulting wave

function is called a spin orbital χ(x), given by

χ(x) =





ψ(r)α(ω)

or

ψ(r)β(ω)

(2.15)

Therefore, for every spatial orbital one can build two different spin orbitals.

Spatial orbitals centered on an atomic nucleus are called atomic orbitals (AOs) and

can be represented by certain basis functions. In general, the basis expansion has the

form

ψ(r) =

K∑

i=1

ciφi(r), (2.16)

with φi(r) being the individual basis functions within the applied basis set and ci are

constant coefficients. The number K determines when the basis expansion is truncated,

i.e. how many basis functions are used. An exact representation of ψ(r) is only possible

if the basis set is complete, which would require an infinite number of basis functions.

Therefore, we always have to work with approximate representations and the size of

the used basis set determines among other things the numerical accuracy of the calcu-

lations. In quantum chemistry mostly atom-centered Gaussian-type basis functions are
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used, while most solid-state physics codes rely on so-called plane waves. In this work,

we will use throughout numerical atom-centered basis functions, which are described in

detail in Ref. 74. For the description of electrons within a molecular systems, so-called

molecular orbitals (MOs) are used. They are typically obtained by a linear combination

of atomic orbitals (LCAO).

2.5 Many-Electron Wave Functions

Since we have established the wave function of a single electron, we will now move on to

the wave function of an N -electron system. First, we assume that we are dealing with a

system containingN electrons, which do not interact with each other. The corresponding

Hamiltonian of a non-interacting system is then just the sum of independent single-

electron hamiltonians ĥ(i) and can be expressed as

Ĥnon−int =

N∑

i=1

ĥ(i) = −
N∑

i=1

1

2
∇2

i +

N∑

i=1

ν(ri). (2.17)

These single-electron operators ĥ(i) describe the kinetic and potential energy of the

corresponding electron i, and we completely neglect any electron-electron repulsion ef-

fects. Hence, the wave function of such a non-interacting system (ΨHP) can simply be

a product of spin orbitals.

ΨHP(x1,x2, . . . ,xN ) = χi(x1)χj(x2) · · ·χk(xN ) (2.18)

This many-electron wave function is called a Hartree product. The corresponding eigen-

value amount to the sum of the individual spin orbital energies. However, this approach

has one major drawback, even within the independent-particle approximation. In the

Hartree product, electrons are not indistinguishable, i.e., electron number n will always

occupy spin orbital χn. Hence, the Hartree product violates the antisymmetry principle

described above.

However, it is possible to create a linear combination of Hartree products, which

fulfills the antisymmetry principle. This antisymmetrized product is called a Slater

determinant Ψ(x1,x2, . . . ,xN ) and can be written as

Ψ(x1,x2, . . . ,xN ) =
1√
N !

∣∣∣∣∣∣∣∣∣

χ1(x1) χ2(x1) · · · χN (x1)

χ1(x2) χ2(x2) · · · χN (x2)
...

...
...

χ1(xN ) χ2(xN ) · · · χN (xN )

∣∣∣∣∣∣∣∣∣

, (2.19)

where the factor 1/
√
N ! provides for the proper normalization of the wave function.

In this approach we have now N electrons, which occupy N spin orbitals but it is not

specified which electron occupies which orbital. If we now interchange the coordinates of

two electrons, the sign of the determinant changes. In case two electrons would occupy
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the same spin orbital, the determinant would become zero. Therefore, this approach

now completely satisfies the Pauli exclusion principle.

While the Hartree product is a completely independent-electron wave function, the

antisymmetrization leading to the Slater determinant introduces so-called exchange-

correlation effects. This means that now two electrons with the same spin are correlated.

However, the motion of electrons having opposite spin, remains uncorrelated.

2.6 The Hartree-Fock Method

Now we discuss the Hartree-Fock (HF) method, which aims to approximately solve

the electronic Schrödinger equation, and is the general starting point for more advanced

wave-function based approaches. In the HF approximation we utilize the above discussed

Slater determinant. The goal is to find the best possible approximation for the true

electronic wave function, which can be described by using a single Slater determinant.

According to the variational principle, the best wave function within the used functional

form yields the lowest possible energy E0, determined by

Etrial = 〈Ψtrial|Ĥelec|Ψtrial〉 ≥ 〈Ψ0|Ĥelec|Ψ0〉 = E0. (2.20)

Therefore, we start with a trial wave function Ψtrial and minimize Etrial until E0 is

reached by varying the spin orbitals. The optimal spin orbitals can be obtained via the

so-called Hartree-Fock equations, which have the general form

[
ĥ(xi) +

∑

b

Ĵb(xi)−
∑

b

K̂b(xi)

]
χa(xi) = ǫaχa(xi), (2.21)

where ǫa is the energy corresponding to spin orbital χa. The expression within the square

bracket represents the effective one-electron Fock operator F̂ , which itself consists of the

one-electron operator ĥ, the Coulomb operator Ĵb, and the Exchange operator K̂b. The

latter two operators are defined below by their effect on orbital χa:

Ĵb(xi)χa(xi) =

[∫
dxj χ

∗

b(xj)
1

rij
χb(xj)

]
χa(xi), (2.22)

K̂b(xi)χa(xi) =

[∫
dxj χ

∗

b(xj)
1

rij
χa(xj)

]
χb(xi). (2.23)

In the HF approximation we replace the many-electron problem essentially by a one-

electron problem, where we treat the electron-electron interaction in an average way.

The HF potential vHF(xi), given by

vHF(xi) =
∑

b

(
Ĵb(xi)− K̂b(xi)

)
, (2.24)
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describes the average potential, which is experienced by electron i due to the other

electrons in the system. Thus, our electrons move essentially independently within

the mean field of all other electrons. As can be seen in the equations above, vHF(xi)

depends on all other spin orbitals. Therefore, it is only possible to solve the HF equations

iteratively, which is called the self-consistent field (SCF) approach. Therein, we start

with an initial guess for the spin orbitals in order to calculate the HF potential. Solving

the HF equations yields then a new set of spin orbitals, which we utilize as input for

the next iteration. This iterative procedure is continued until so-called self-consistency

is reached. This is the case when the field is no longer changing, i.e. when the spin

orbitals used for the construction of F̂ are essentially identical with the eigenfunctions

of F̂ .

Since we treat the electron-electron interaction here only in an average way, the

HF method is for example not able to describe dispersion interactions. Typically, the

so-called correlation energy is defined as the difference between the true ground-state

energy of a system and the HF solution. The HF method serves as starting point for a

variety of more accurate post-Hartree-Fock methods. One way of improving upon HF is

the configuration interaction (CI) method, which utilizes a linear combination of the HF

Slater determinant with excited Slater determinants. The wave function can be written

in a CI expansion according to

|Φ〉 = c0|Ψ0〉+
∑

a,r

cra|Ψr
a〉+

∑

a<b

∑

r<s

crsab|Ψrs
ab〉+ · · · , (2.25)

where a and b denote indices referring to occupied orbitals while the indices r and

s refer to virtual orbitals according to the HF description. We successively replace

occupied orbitals by virtual orbitals and the corresponding contribution to the total

wave function is described by the mixing coefficients c. When all possible excited Slater

determinants are considered, this approach is called full-CI [14, 75]. At the complete

basis set limit, full-CI provides the exact energy of a system (in the non-relativistic limit).

Unfortunately, due to the computational complexity, this approach can only be used for

small molecules. More practically and commonly used wave-function-based methods for

the calculation of the correlation energy are for example Møller-Plesset perturbation

theory [76] and the Coupled Cluster approach [26, 77].
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Chapter 3

Density Functional Theory

In the previous chapter we have discussed the basics of wave-function based electronic

structure theory. We have seen that the wave function is a very high-dimensional object

with 3N spatial coordinates plus N spin functions. However, it is possible to reformulate

the Schrödinger equation based on a much simpler, only three-dimensional quantity

— the electron density. The one-particle density ρ(r) (electron density) describes the

number of electrons within a specific unit volume and can be evaluated at the position

r1 as

ρ(r1) = N

∫
· · ·
∫

|Ψ(x1,x2, · · · ,xN )|2 ds1dx2 · · · dxN . (3.1)

This chapter provides an overview of the basics of density functional theory (DFT) and

is based on the book by Parr & Yang [78] and Ref. 79. All equations within this chapter

are expressed in atomic units and the discussion is limited to the spin-unpolarized case.

One practical drawback of DFT is the fact that common density functional approx-

imations (DFAs) are unable to properly describe long-range correlation effects. This

issue has long prevented DFT to be used for weakly-bound systems. However, these

effects can be included by combining DFAs with appropriate models for van-der-Waals

(vdW) dispersion interactions. This development lead to the broad applicability and

the major success of DFT in recent years. Therefore, the second part of this chapter

gives a short overview of dispersion models including a detailed description of the two

methods used throughout this thesis.

3.1 The Hohenberg-Kohn Theorems

DFT is based on the Hohenberg-Kohn theorems [80]. It is claimed that the external

potential ν(r) of a given system can — within an additive constant — be determined by

the ground-state electron density ρ(r). The knowledge of ρ(r) enables the determination

of the ground-state wave function and the total energy of a given system can be expressed

as

E[ρ] = T [ρ] + Vee[ρ] + Vne[ρ] =

∫
ρ(r)ν(r)dr+ F [ρ], (3.2)
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where F [ρ] describes the universal Hohenberg-Kohn functional, which is given by

F [ρ] = T [ρ] + Vee[ρ]. (3.3)

The second Hohenberg-Kohn theorem [80] established the density variation principle,

which can be written as

E0 = F [ρ] +

∫
ρ(r)ν(r)dr ≤ F [ρ′] +

∫
ρ′(r)ν(r)dr. (3.4)

The exact ground-state energy E0, which corresponds to the ground-state density ρ(r),

is the lowest obtainable energy. This means that the energy corresponding to any trial

density ρ′(r) is guaranteed to be larger than or equal to E0. The trial density ρ′(r) has

to satisfy ∫
ρ(r)dr = N, (3.5)

with N being the number of electrons. These two theorems show that all ground-state

properties of a certain system could theoretically be determined by density functional

theory. However, the exact Hohenberg-Kohn density functional F [ρ] remains unfortu-

nately unknown.

3.2 Kohn-Sham DFT

In 1965, Kohn and Sham addressed this issue by proposing the usage of a hypothetical

non-interacting reference system [81]. They demanded that this non-interacting system

has exactly the same ground-state electron density as the corresponding interacting

system. The Hamiltonian of this non-interacting system Ĥs is given by

Ĥs = −1

2

N∑

i

∇2
i +

N∑

i

ν(ri). (3.6)

It can be seen that we do not account here for the electron-electron repulsion. This

approach has the advantage that the corresponding wave function Ψs is — just like in

Hartree-Fock theory — a simple Slater determinant (see Eq. 2.19). Therefore, we can

calculate the kinetic energy Ts[ρ] according to

Ts[ρ] = 〈Ψs| −
1

2

N∑

i

∇2
i |Ψs〉 = −1

2

N∑

i

〈ψi|∇2|ψi〉. (3.7)

Next, we can redefine F [ρ] as

F [ρ] = T [ρ] + Vee[ρ] = Ts[ρ] + J [ρ] + Exc[ρ], (3.8)
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with J [ρ] expressing the self-interaction energy of the electron cloud, which can be

calculated according to

J [ρ] =
1

2

∫ ∫
1

|r− r′|ρ(r)ρ(r
′) dr dr′. (3.9)

Then, we define a new energy term called exchange-correlation energy Exc[ρ], which

gathers all still missing energy contributions as

Exc[ρ] = T [ρ]− Ts[ρ] + Vee[ρ]− J [ρ]. (3.10)

However, no exact form for Exc[ρ] is known. Therefore, finding the exact exchange-

correlation functional has become a central task within DFT. Many approximations of

Exc[ρ] have been developed and several examples will be discussed below. Assuming the

knowledge of Exc[ρ], the total energy E[ρ] can now be written as

E[ρ] =

∫
ν(r)ρ(r)dr+ Ts[ρ] + J [ρ] + Exc[ρ]. (3.11)

This leads then to the so-called Kohn-Sham (KS) equations

(
ν(r)− 1

2
∇2 +

∫
ρ(r′)

|r− r′| dr
′ + νxc(r)

)
ψi = ǫiψi (3.12)

where

ρ(r) =
N∑

i

|ψi(r)|2, (3.13)

and

νxc(r) =
δExc[ρ]

δρ(r)
. (3.14)

The KS equations can be solved iteratively by using the SCF approach, as described in

the previous chapter.

3.3 Density-Functional Approximations

Now, we discuss several developed density-functional approximations (DFAs). The first

and simplest approximation for the exchange-correlation functional (Exc[ρ]) is the so-

called local density approximation (LDA) [81], given by

ELDA
xc [ρ] =

∫
ρ(r)ǫxc(ρ(r)) dr, (3.15)

with ǫxc(ρ(r)) describing the exact exchange-correlation energy within a homogeneous

electron gas. While this approximation yields reasonable results for systems with slow-

varying electron density — like metallic systems — the accuracy is most often insufficient

for molecules and vdW-bound system.
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The next approximation is the so-called generalized gradient approximation (GGA),

given by

EGGA
xc [ρ] =

∫
f(ρ(r),∇ρ) dr =

∫
ρ(r)ǫxc(ρ(r))Fxc(ρ(r),∇ρ) dr. (3.16)

Therein, (some) non-local effects are introduced by making Exc[ρ] also dependent on

the first derivative of the density ∇ρ. E
GGA
xc can be formulated in terms of ELDA

xc and

an additional dimensionless enhancement factor Fxc. This approximation lead to a

variety of different DFAs, called semi-local functionals. One very commonly used GGA

functional — and the one considered within this thesis — was developed by Perdew,

Burke, and Ernzerhof [82], and is therefore termed the PBE functional. This functional

is considered to be a non-empirical functional and satisfies several exact conditions.

GGA functionals yield significantly better results than the LDA but still underestimate

binding energies in weakly-bound systems.

Subsequently, so-called meta-GGA functionals were developed, which take also the

second derivative of the density into account. While GGA and meta-GGA function-

als provide already quite good results for a variety of systems [83], the description of

the exchange still has one fundamental problem; every electron experiences a spurious

interaction with itself, which is called self-interaction error. However, the exchange is

described correctly in the previously discussed Hartree-Fock method. This realization

lead to the development of so-called hybrid functionals, which incorporate a certain frac-

tion of exact exchange (Ex) analogous to Hartree-Fock theory. The exchange-correlation

energy can then be written as

EHybrid
xc [ρ] = αEx[ρ] + (1− α)EGGA

x [ρ] + EGGA
c [ρ], (3.17)

where the amount of included exact exchange is controlled with the factor α. Within

this thesis the PBE0 hybrid functional [84] is used. This method relies on PBE for the

GGA part and uses 25% of exact exchange, i.e. α = 0.25. It will be shown later on

that PBE0 yields almost consistently better results than PBE but the calculation of the

exact exchange also significantly increases the computational cost.

3.4 Van der Waals Dispersion Models

Traditional DFAs — like the ones discussed above — are not able to correctly capture

long-range electron-correlation effects in molecular systems. Therefore, the missing dis-

persion energy Edisp is often determined a posteriori and subsequently added to the

total energy of the used DFA. This approach is termed vdW-inclusive DFT. Most atom-

pairwise dispersion models have the general form

Edisp = −
∑

A>B

fdmp
CAB
6

R6
AB

, (3.18)

22



3.4 Van der Waals Dispersion Models

with RAB being the interatomic distance, CAB
6 being the dipole-dipole dispersion coef-

ficient between the atoms A and B, and fdmp refers to a damping function. A detailed

discussion about such damping functions can be found in Ref. 85. Such an approach is

used for instance in DFT-D2 [31] and the Tkatchenko-Scheffler (TS) [34] vdW model.

D2 utilizes fixed empirical dispersion coefficients while the TS model obtains them on

the fly from the electron density.

Dispersion interaction can in general be expressed in a multipole expansion [11].

However, the so far mentioned D2 and TS models contain only dipole-dipole interactions.

Hence, the qualitative description could be improved by including dipole-quadrupole in-

teractions, which lead to an additional CAB
8 /R8

AB term. Such an approach is used within

the DFT-D3 method [32], in which the dispersion coefficients depend now on atomic co-

ordination numbers. Another approach for the calculation of dispersion interactions is

the so-called exchange-dipole moment (XDM) model [33, 86, 87], which also depends

on the electron density. Therein, pairwise dispersion interactions are considered up to

quadrupole-quadrupole interactions.

However, dispersion interactions are in general not pairwise additive and considera-

tion of many-body interactions can be important [88]. The DFT-D3 model approximates

such many-body interactions by using a three-body Axilrod-Teller-Muto term to describe

the interaction between three instantaneous dipoles. Furthermore, Tkatchenko et al. de-

veloped the many-body dispersion (MBD) model [35, 64]. Therein, dipolar many-body

(many-atom) interactions are considered up to infinite order. In addition, MBD includes

also electrodynamic response effects via a short-range self-consistent screening of atomic

polarizabilities. Such effects can be crucial for molecular crystals since the presence of

the crystal field leads to significant changes in the polarizabilities compared to isolated

molecules. [13]

Within this thesis, the TS and MBD dispersion models will be used throughout.

Therefore, these two models are described in detail below. It is noted in passing that

the TS and MBD models are explicit density functionals, which enables the investigation

of vdW effects for a variety of properties beyond structures and stabilities [15, 89].

3.4.1 Tkatchenko-Scheffler Dispersion Model

The dispersion energy within the TS model [34] is calculated in an effective-pairwise

fashion using the general expression shown in Eq. 3.18. However, the dispersion param-

eters for each atom A are obtained from the electron density, as determined during a

DFT calculation. Therefore, an effective atom-in-a-molecule volume V eff
A is determined

via a Hirshfeld [90] partitioning of the electron density, which is further on compared

to a free-atom volume V free
A . The resulting effective atomic dipole polarizability αeff

A ,

dispersion coefficient Ceff
6,A, and vdW radius R0,eff

A can be calculated according to

αeff
A =

(
V eff
A

V free
A

)
αfree
A , (3.19)
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Ceff
6,A =

(
V eff
A

V free
A

)2

C free
6,A , (3.20)

R0,eff
A =

(
V eff
A

V free
A

)1/3

R0,free
A . (3.21)

The corresponding free-atom values of these three quantities are tabulated for (almost)

every element. The interatomic dispersion coefficient CAB
6 between atoms A and B is

obtained via the following relation (the eff labels are subsequently dropped for clarity):

CAB
6 =

2CAA
6 CBB

6
α0
B

α0
A

CAA
6 +

α0
A

α0
B

CBB
6

. (3.22)

Finally, the damping function fdmp is calculated in a Fermi-type way [91] according to

fdmp(RAB, R
0
AB) =

1

1 + exp
[
−20

(
RAB

sRR0
AB

− 1
)] , (3.23)

where

R0
AB = R0

A +R0
B, (3.24)

and sR is a single empirical parameter determining the onset of the dispersion correction

in terms of the distance, which is necessary to couple the dispersion model to any density

functional [92]. This parameter was determined using the S22 benchmark set [28] and

amounts for PBE and PBE0 to 0.94 and 0.96, respectively [34].

3.4.2 Many-Body Dispersion Model

The adiabatic connection fluctuation-dissipation theorem [93, 94] provides a framework,

in which the exact electron correlation energy can be expressed in terms of density-

density response functions. The MBD model [35, 64] uses this framework to describe

the dipole response of atoms within the random-phase approximation. The resulting

MBD dispersion energy (long-range correlation energy) amounts to

EMBD =
1

2π

∫
∞

0
dω Tr [ln(1−AT)] , (3.25)

withA being a diagonal 3n×3nmatrix containing isotropic atomic polarizabilities, where

n refers to the number of atoms; T describes the dipole-dipole coupling tensor. It was

shown that this expression is equivalent to the diagonalization of a model Hamiltonian

for coupled isotropic quantum harmonic oscillators [64].

The MBDmethod accounts for many-body dispersion effects but also for self-consistent

dielectric screening effects, i.e. a modification of the interaction between atoms due to

the presence of additional atoms or polarizable centers. MBD calculations involve three
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3.4 Van der Waals Dispersion Models

separate steps and are done in a range-separated way. First, atomic polarizabilities

are obtained via the TS approach described above. In a second step, screened atomic

polarizabilities are calculated for the short range via a range-separated self-consistent

screening (rsSCS) with

αrsSCS(iω) = α(iω)−α(iω)TSRαrsSCS(iω), (3.26)

where α(iω) describes the diagonal polarizability matrix derived from the TS approach

and αrsSCS(iω) is the resulting screened polarizability matrix. The frequency dependence

for an atom A within α(iω) is given by

αA(iω) =
α0
A

1 +
(

ω
ωA

)2 , (3.27)

with α0
A and ωA being the static polarizability and characteristic frequency, respectively,

as determined within the TS approach [34]. The dipole-dipole coupling tensor TAB

between atoms A and B within the MBD model is given by

TAB = ∇RA
⊗∇RB

erf(RAB/σAB)

RAB
= −3RiRj −R2

ABδij
R5

AB

×
[
erf

(
RAB

σAB

)
− 2RAB√

πσAB
e−(RAB/σAB)2

]
+

4RiRj√
πσ3ABR

2
AB

e−(RAB/σAB)2 , (3.28)

with

σAB =
√
σ2A + σ2B, (3.29)

where

σA =

(√
2αA

3
√
π

)1/3

. (3.30)

The indices i and j indicate the Cartesian components of RAB. Now, the short-range

dipole-dipole tensor is obtained via

TSR
AB = (1− fdmp(RAB))TAB (3.31)

with the damping function

fdmp =
1

1 + exp [−6 (RAB/S − 1)]
, (3.32)

where

S = sR(R
0
A +R0

B). (3.33)

In this case, the values for the scaling parameter sR amount for PBE and PBE0 to 0.83

and 0.85, respectively [64].
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Figure 3.1: Convergence of TS and MBD vdW lattice energies w.r.t. a dipole-dipole
cut-off radius and a MBD supercell cut-off radius for a ND3 and HMB crystal. Repro-
duced with permission from Ref. 13. Copyright 2016 John Wiley & Sons, Ltd.

The so obtained screened polarizabilities are now utilized as input for step 3, which

calculates the corresponding long-range correlation energy according to

EMBD@rsSCS =
1

2π

∫
∞

0
dω Tr

[
ln(1−ATLR)

]
. (3.34)

In this case only the long-range dipole-dipole tensor TLR is used, in order to avoid

double-counting effects [64]. TLR is given by

TLR = T−TSR, (3.35)

but is in the MBD model approximated by its long-range limit, amounting between

atoms A and B to

TLR
AB = −3RiRj −R2

ABδij
R5

AB

, (3.36)

with i and j referring to the Cartesian components of RAB. Furthermore, it is also

possible to decompose the MBD energy into orders n, i.e. n-atom contributions [95, 96],

according to

En = − 1

2π

∫
∞

0
dω

∞∑

n=2

1

n
Tr [(AT)n] . (3.37)

For a more in-depth discussion of the MBD method the reader is referred to Refs.

64, 88, 96, 97.
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In molecular crystals, dispersion interactions can extend over a large distance, es-

pecially when described with MBD. We have illustrated this in Ref. 13 using a cubic

deutero-ammonia (ND3) and a hexamethylbenzene (HMB) crystal (see Fig. 3.1). The

convergence of the vdW energy normalized per molecule is plotted w.r.t. a cut-off radius

rcut. The completely converged energy defines the zero of the energy. In the case of TS,

interactions are only considered for interatomic distances less than rcut. In the case of

MBD, interactions between two atoms are only included in the dipole-dipole tensor if

the interatomic distance is less than rcut. Moreover, we consider the coupling between

the harmonic oscillators within a cubic supercell with lattice constant a = rcut. It can

be clearly seen in Fig. 3.1 that the MBD energies converge significantly slower than the

TS energies. For instance, converging the lattice energy of HMB to 0.5 kJ/mol requires

a distance of about 20 Å for TS and already a distance of around 33 Å for MBD. Both

considered molecular crystals are quite symmetric. For less symmetric and more com-

plex molecular crystals, we expect an even longer range for MBD interactions, as for

instance shown for nanostructured materials in Refs. 98, 99.
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Chapter 4

Lattice Vibrations

Up to this point we have only discussed the total energy of a system in terms of the

electronic energy and the nuclear repulsion. In these cases we assumed that all the

atomic positions are fixed. However, thermodynamic fluctuations always create dis-

placements from the equilibrium positions of the atoms, i.e. the atoms vibrate around

their equilibrium positions. As we will see later on, these displacements are even present

at a temperature of 0 K due to quantum-mechanical effects. We will see that the en-

ergy of lattice vibrations is quantized and the corresponding quantum is called phonon.

Accounting for this dynamics due to lattice vibrations is for instance essential for the

description of free energies and vibrational spectra. In this chapter, we will first discuss

the concept of the so-called harmonic approximation and the related harmonic oscillator

model system. Then, we address also anharmonic effects by introducing the Morse oscil-

lator. Furthermore, we focus on the understanding of normal/phonon modes, which will

be illustrated for a few simple systems. This discussion and subsequent chapters require

a basic understanding of crystal lattices and the concept of the reciprocal lattice, as for

instance described in the book by Ashcroft & Mermin [100]. The content of this chapter

is based on the textbooks by Ashcroft & Mermin [100], Hofmann [101], Kittel [102],

McQuarrie [65], and Piela [66].

4.1 The Harmonic Approximation

In principle, a complete description of a given system would require the knowledge of

the total potential-energy surface (PES), which is a 3n-dimensional object, with n being

the number of atoms in the considered molecular system or in the unit cell. One very

common approximation to this high-dimensional problem is the harmonic approximation

(HA). Therein, we express the PES around the equilibrium geometry (with coordinates

Req) using a second-order Taylor expansion, given by

E (Req +∆R) = E(Req)+
∑

i

∂E

∂Ri

∆Ri+
1

2

∑

i,j

∂2E

∂Ri∂Rj

∆Ri∆Rj +O(∆R3), (4.1)
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Figure 4.1: Illustration of the harmonic approximation. The actual potential curve of
the total energy is illustrated in black, while the harmonic approximation around the
equilibrium position (Req) is shown in red.

where E(Req) denotes the total (static) energy of the equilibrium geometry. This is

illustrated in Fig. 4.1. The first-order term vanishes because the forces at a local

minimum of the PES are zero. The second-order term leads to the harmonic force

constants Φij

∂2E

∂Ri∂Rj

= − ∂Fj

∂Ri

= Φij , (4.2)

which form the so-called Hessian matrix, or in the case of periodic systems the dynamical

matrix [100]

Dij(q) =
∑

j′

ei(q·Rjj′ )

√
mimj

Φij , (4.3)

wheremi stands for the mass of atom i. All effects arising from the higher-order terms in

Eq. 4.1 are called anharmonic effects and are neglected in the harmonic approximation.

The harmonic force constant Φij describes how the force on atom j changes when

atom i is displaced. Typically, the dynamical matrix is obtained numerically by finite dif-

ferences, but it can also be calculated using density-functional perturbation theory [103].

The eigenvalues of Dij(q) are the phonon frequencies ω and the corresponding eigen-

vectors describe the phonon modes. In the case of non-periodic systems we speak of

vibrational frequencies/modes. The complete dynamics of such a harmonic system is

determined by a system of 3n independent quantum harmonic oscillators, one oscillator

for each phonon mode. The harmonic Helmholtz free energy FHA is given by

FHA(T ) = Etot + FHA
vib (T ), (4.4)
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with

FHA
vib (T ) =

∫
dω g(ω)

~ω

2
+

∫
dω g(ω) kBT ln

[
1− exp

(
− ~ω

kBT

)]
, (4.5)

with g(ω) being the phonon density of states (pDOS), which describes the number

of available vibrational states at a certain frequency. The pDOS can be calculated

according to

g(ω) =
∑

s

∫
dq

(2π)3
δ(ω − ωs(q)). (4.6)

The first integral in equation 4.5 describes so-called zero-point vibrations, which are

always present in every quantum system — even at a temperature of 0K — while the

second integral accounts for thermally induced vibrations including vibrational entropy.

In the following, we discuss in detail the underlying harmonic oscillator model system.

4.2 The Classical Harmonic Oscillator

Before we move on to a quantum harmonic oscillator, we shall discuss the basics of

a classical one-dimensional harmonic oscillator. Suppose we have a mass m, which is

connected to a solid wall via a spring. We consider here only the force due to the spring,

i.e. we neglect the gravitational force. The coordinate x describes the displacement of

m w.r.t. its equilibrium position. Furthermore, we assume that the force (f) acting on

m is directly proportional to the displacement x. This results in the so-called Hooke’s

law, given by

f = −kx, (4.7)

where k is the positive proportionality constant, usually called force constant. Therefore,

the corresponding Newton’s equation of motion is

m
d2x

dt2
+ kx = 0. (4.8)

The general solution for this equation is given by

x(t) = c1 sin(ωt) + c2 cos(ωt), (4.9)

with the angular frequency ω being

ω =

√
k

m
. (4.10)

Assume the spring is initially stretched so that the displacement amounts to A and

subsequently released. In this case, the initial velocity amounts to zero. This leads to

x(0) = A = c1 sin(0) + c2 cos(0) = c2 (4.11)
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and (
dx

dt

)

t=0

= 0 = c1ω cos(0)− c2ω sin(0) = c1ω. (4.12)

Therefore, c1 = 0 and c2 = A in this case, and

x(t) = A cos(ωt). (4.13)

This result illustrates that our mass m continuously oscillates between A and −A with

an angular frequency ω. The corresponding linear frequency ν = ω/2π.

The potential energy of the classical harmonic oscillator V can be obtained from the

fact that the force is a derivative of the potential energy, which can be expressed as

f(x) = −dV
dx

. (4.14)

Therefore, V (x) amounts to

V (x) = −
∫
f(x)dx+ c =

kx2

2
+ c, (4.15)

where c is an arbitrary constant. Typically, the equilibrium position is chosen to be the

zero of the energy, which leads to c = 0. The kinetic energy T is

T =
m

2

(
dx

dt

)2

. (4.16)

Hence, the total energy E of our classical harmonic oscillator amounts to

E = T + V =
mω2A2

2
sin2(ωt) +

kA2

2
cos2(ωt) =

kA2

2

[
sin2(ωt) + cos2(ωt)

]
=
kA2

2
.

(4.17)

The total energy consists of potential and kinetic energy. As can be seen from the

equation above, the total energy is constant, proving that the harmonic oscillator is a

conservative system.

After discussing the basics of a general one-dimensional classical harmonic oscillator,

we return now to our atomistic systems. But before we address polyatomic systems, we

focus on the vibrations within a diatomic molecule. In this case we have two atoms with

masses m1 and m2, which are connected via a spring. The position of the atoms shall

be x1 and x2, respectively. The forces acting on the two individual atoms are equal but

with opposite sign. The vibrational motion of our diatomic molecule depends only on

the interatomic distance x = x2 − x1. In this case we have now two equations of motion

m1
d2x1
dt2

= kx and m2
d2x2
dt2

= −kx. (4.18)

Adding both equations of motions leads to

d2

dt2
(m1x1 +m2x2) = 0. (4.19)
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Introducing now a center-of-mass coordinate

X =
m1x1 +m2x2

M
, with M = m1 +m2 (4.20)

yields

M
d2X

dt2
= 0. (4.21)

This result illustrates that the center of mass moves with a constant momentum. Fur-

thermore, subtracting both equations of motions and dividing by the respective masses

leads to
d2x

dt2
= −kx

(
1

m1
+

1

m2

)
. (4.22)

Rewriting
1

m1
+

1

m2
=
m1 +m2

m1m2
=

1

µ
(4.23)

leads to

µ
d2x

dt2
+ kx = 0, (4.24)

where µ is the so-called reduced mass. This result is essentially equivalent to Eq. 4.10

except that the mass m is replaced by the reduced mass µ, leading to

ω =

√
k

µ
. (4.25)

The substitution with the reduced mass allows us to reduce the two-body problem to a

simple one-body problem.

This concept can also be used for polyatomic and periodic systems by the introduction

of so-called normal-mode coordinates [65]. For a system with N atoms this leads to 3N

normal modes, which describe the motion of the system. For every mode we obtain

an atomic displacement vector, which describes the corresponding atomic motion. The

corresponding reduced mass can be calculated according to

µ =
1

∑N
i=1

1
mi

. (4.26)
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4.3 The Quantum Harmonic Oscillator

Now, we discuss the description of vibrations using a quantum-harmonic oscillator. For

simplicity, we return to our diatomic molecule described above. The Schrödinger equa-

tion is given by

− ~
2

2µ

d2ψ

dx2
+ V (x)ψ(x) = Eψ(x), (4.27)

where V (x) is our harmonic potential

V (x) =
1

2
kx2. (4.28)

This leads to the following differential equation

d2ψ

dx2
+

2µ

~2

(
E − 1

2
kx2
)
ψ(x) = 0. (4.29)

Solving this equation leads to the energy of the quantum-harmonic oscillator, given by

Ev = ~ω

(
v +

1

2

)
, with v = 0, 1, 2, . . . . (4.30)

Therefore, the energy of a quantum-harmonic oscillator is quantized, i.e. only discrete

energy values are possible. An illustration of these energy levels is shown in Fig. 4.2. All

energy levels are equally spaced and the energy difference between two levels amounts

to ~ω. The harmonic oscillator has an infinite number of vibrational levels and does not

allow for dissociation. Note, that at the lowest level v = 0, the corresponding energy

is not zero — as in the classical case — but 1/2~ω. This is a result of the uncertainty

principle and we call this energy the zero-point energy. Since v = 0 is the vibrational

ground state, this vibrational energy is also present at zero temperature (at which an

excitation to a higher level is not possible).

The corresponding wave functions of the harmonic oscillator have the following form:

ψv(x) = NvHv

(√
αx
)
e−αx2/2 (4.31)

with

α =

√
kµ

~2
(4.32)

and a normalization constant

Nv =
1√
2vv!

(α
π

)1/4
. (4.33)

The expression Hv (
√
αx) stands for the so-called Hermite polynomials. The first three

Hermite polynomials ar given by

H0(ξ) = 1, H1(ξ) = 2ξ, H2(ξ) = 4ξ2 − 2, (4.34)
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Figure 4.2: Illustration of a one-dimensional quantum harmonic oscillator.

where
√
αx has been replaced with ξ for simplicity. Therefore, the wave functions

corresponding to the lowest three vibrational levels are

ψ0 =
(α
π

)1/4
e−αx2/2, ψ1 =

(
4α3

π

)1/4

xe−αx2/2, ψ2 =
( α
4π

)1/4
(2αx2−1)e−αx2/2.

(4.35)

4.4 The Morse Oscillator

As mentioned at the beginning of this chapter, the harmonic approximation does not

include any anharmonic effects, i.e. any higher-order terms in the discussed Taylor

expansion. One quantum-mechanical model system, which is able to describe some

anharmonic effects, is the Morse oscillator [104, 105]. The potential of a Morse oscillator

is given by

V (x) = De

(
1− e−a(x−x0)

)2
, (4.36)

with a, De, and x0 being the width of the potential, the well depth, and the minimum

of the potential, respectively. An illustration of a Morse oscillator is shown in Fig. 4.3.

The Morse oscillator is a particularly useful model system since it is one of very few

systems for which we know an analytical solution of the Schrödinger equation. For a
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Figure 4.3: Illustration of a one-dimensional Morse oscillator.

vibrational mode in state v the energy can be calculated according to

E(v) = ~ω0

(
v +

1

2

)
− ~

2 ω2
0

4De

(
v +

1

2

)2

, (4.37)

with

ω0 =

√
2a2De

µ
, (4.38)

where µ describes the reduced mass. As can be seen in Fig. 4.3, the vibrational levels are

now — in contrast to the harmonic oscillator — not evenly-spaced. The energy differ-

ences between them decrease with increasing v and the energy between two subsequent

levels amounts to

E(v + 1)− E(v) = ~ω0 − (v + 1)
~
2 ω2

0

2De
. (4.39)

In contrast to the harmonic oscillator, the Morse oscillator allows for dissociation, i.e.

there exists only a finite number of bound vibrational states. Note that the actual dis-

sociation energy is not De but amounts to D0 (see Fig. 4.3) due to the zero-point energy.

4.5 Phonon Modes and Dispersion in Simple Model Systems

4.5.1 Infinite Chain of Atoms with One Atom in the Unit Cell

Now we discuss the nature of phonon/normal modes and how their vibrational frequency

varies in reciprocal space, which is called phonon dispersion. First, we consider a very
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Figure 4.4: Phonon dispersion of a one-dimensional infinite chain of atoms with a
single atom in the unit cell.

simple model system, which is a homogeneous infinite chain of atoms. This system is

periodic in one dimension and has only one atom per unit cell. The atoms are separated

by the cell length b and hence the length of the reciprocal space vector amounts to 2π/b.

All atoms are connected via springs with force constant γ and have a mass M . The

location of atom n within the chain amounts to nb (n = 1, 2, 3, . . .). In this example we

only take interactions between the nearest neighbors into account and express everything

in terms of classical harmonic oscillators. Therefore, the equation of motion for an atom

n is given by

M
d2ξn
dt2

= −γ(ξn − ξn−1) + γ(ξn+1 − ξn) = −γ(2ξn − ξn−1 − ξn+1), (4.40)

where ξ describes the displacement of the respective atom. The corresponding solution

has the following form

ξn(t) = Aei(kbn−ωt), (4.41)

with A being the displacement amplitude and k being the wave vector. Inserting Eq.

4.41 into Eq. 4.40 yields

−Mω2ei(kbn−ωt) = −γ(2− e−ikb − eikb)ei(kbn−ωt) = −2γ [1− cos(kb)] ei(kbn−ωt). (4.42)

Therefore, the frequency ω depends for every atom n on k according to

ω(k) =

√
2γ [1− cos(kb)]

M
. (4.43)

This phonon dispersion is illustrated in Fig. 4.4. It can be seen that at a small k the

37



4 Lattice Vibrations

(a)

(b)

Figure 4.5: Illustration of the phonon mode of a homogeneous infinite atomic chain at
the k = 0 (a) and at k = ±π/b (b). The dashed lines indicate the length of the unit cell.

frequency ω shows a linear behavior, which can be described by

ω =

√
γb2

M
|k|. (4.44)

When k increases, the frequency reaches its maximum at ±π/b. Fig. 4.5 illustrates the

atomic motions at k = 0 (a) and k = ±π/b (b). In the first case, all atoms move in

phase in the same direction. In the second case, we observe that now neighboring atoms

move out of phase either towards or away from each other.

4.5.2 Infinite Chain of Atoms with Two Atoms in the Unit Cell

Now we move on to a slightly more complex one-dimensional atomic chain, which has

two identical atoms per unit cell [100]. The length of the unit cell is again b and both

atoms have a mass M . The positions of the two unit-cell atoms along the chain now

amount to nb and nb + d (see Fig. 4.7) and the corresponding displacements will be

labeled with ξn and ζn, respectively. We assume that d ≤ b/2, leading to interatomic

distances between neighboring atoms of d and b − d, respectively. Hence, the springs

connecting the atoms have now alternating force constants γ and γ′. Again, we only

consider interactions between neighboring atoms, leading to the following equations of

motion:

M
d2ξn
dt2

= −γ(ξn − ζn−1)− γ′(ξn − ζn), (4.45)

M
d2ζn
dt2

= −γ(ζn − ξn+1)− γ′(ζn − ξn). (4.46)

Analogous to Section 4.5.1, we seek a solution of the form

ξn(t) = A1e
i(kbn−ωt), (4.47)

ζn(t) = A2e
i(kbn−ωt), (4.48)
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Figure 4.6: Phonon dispersion of a one-dimensional infinite chain of atoms with
two atoms in the unit cell. The acoustic and optical mode is shown in red and blue,
respectively.
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Figure 4.7: Illustration of the acoustic (a) and optical (b) modes in a diatomic infinite
chain at k = 0.

with A1 and A2 being the respective displacement amplitudes. Inserting Eqs. 4.47 and

4.48 into Eqs. 4.45 and 4.46 yields the following coupled equations:

[
Mω2 − (γ + γ′)

]
A1 +

(
γe−ikb + γ′

)
A2 = 0, (4.49)

(
γe−ikb + γ′

)
A1 +

[
Mω2 − (γ + γ′)

]
A2 = 0, (4.50)

which leads finally to the following expression for the frequency ω:

ω2 =
γ + γ′

M
± 1

M

√
γ2 + γ′2 + 2γγ′ cos(kb). (4.51)

This leads to two different solutions for every n, one for each atom in our unit cell. The

resulting phonon dispersion is plotted in Fig. 4.6, which consists now of two different
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(a)

(b)

Figure 4.8: Illustration of the acoustic (a) and optical (b) modes in a diatomic infinite
chain at k = ±π/b.

branches. The lower branch (shown in red) resembles the result obtained in Section

4.5.1; the frequency ω vanishes at k = 0 and behaves linear at small values of k. This

branch is called the acoustic branch since its behavior is similar to that of sound waves.

The second branch (shown in blue) is located at a higher frequency and is always non-

zero. This branch is called the optical branch since such modes are mainly responsible

for the optical behavior of ionic crystals. The atomic displacements of both branches

are visualized at k = 0 and k = ±π/b in Figs. 4.7 and 4.8, respectively. It can be

seen that all motions at k = 0 are in phase, while all motions at k = ±π/b are out of

phase. The acoustic mode behaves like the result of Section 4.5.1. In the optical mode

at k = 0 the two atoms in the unit cell move against each other, leading to a non-zero

frequency. The number of phonon modes per unit cell depends on the dimensionality

and the number of atoms. In a three-dimensional molecular crystal with N atom per

unit cell we observe 3N phonon modes per unit cell, from which always 3 are acoustic

modes and the remaining ones are optical modes.

4.6 Vibrations in Molecules

After the discussion of simple periodic systems, we finally consider briefly the vibrations

in the case of isolated molecules. As mentioned in Section 4.2, a molecule with N atoms

has always 3N degrees of freedom. Three of them are needed to describe the center of

mass and the corresponding motion consists of simple translations of the whole molecule.

Therefore, these three normal modes constitute the translational degrees of freedom. For

non-linear molecules, another three degrees of freedom are needed for the specification

of the orientation about the center of mass, which are called the rotational degrees of

freedom. This leaves for non-linear molecules 3N − 6 vibrational degrees of freedom.

In case of a linear molecule, we have two rotational degrees of freedom and 3N − 5

vibrational degrees of freedom. We illustrate these vibrational motions for an ammonia

molecule, which has 4 atoms (see Fig. 4.9). In this case we have 6 vibrational degrees

of freedom describing one so-called wagging motion, one scissoring motion, and 4 N–H

bond-stretching vibrations.
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Figure 4.9: Vibrational modes of an ammonia molecule.

In the case of molecular crystals, our resulting normal/phonon modes are a combi-

nation of these intramolecular vibrations and intermolecular translations and rotations.

Such modes will be visualized in Section 7.3.
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Chapter 5

Illustration of Modeling Approaches

Using a Deuteroammonia Crystal

For a long time, modeling of molecular crystals was primarily performed by using clas-

sical force-field approaches or semi-empirical calculations. Due to the development of

sophisticated and efficient quantum-mechanical approximations together with the in-

crease of available computational power, first-principles electronic structure calculations

are nowadays possible for practically relevant molecular crystals. DFT has emerged in

recent years as the method of choice (especially for larger crystals) due to the devel-

opment of more accurate DFAs and the inclusion of long-range correlation energy via

several models for vdW dispersion interactions. So far, DFT calculations of molecu-

lar crystals mainly focused on stabilities and lattice/geometry optimizations without

considering any thermal effects.

This chapter provides an overview of current state-of-the-art approaches used for

first-principles modeling of molecular crystals and discusses necessary approximations

and challenges. We will mainly focus on how temperature effects can be included in the

description of structure and stability and discuss the calculation of vibrational, ther-

mal, and elastic properties. Furthermore, we also highlight the influence of dispersion

Figure 5.1: Unit cell of a cubic ammonia crystal.
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5 Illustration of Modeling Approaches Using a Deuteroammonia Crystal

interactions for all discussed properties. Throughout, we will illustrate certain concepts

using a cubic deutero-ammonia crystal (see Fig. 5.1). A version of this chapter has been

published in WIREs Comput. Mol. Sci. [13] (Copyright © 2016 John Wiley & Sons,

Ltd.).

5.1 Static Lattice Energies

First, we start with the discussion of static lattice energies Elatt, which can be computed

for any given molecular crystal structure with

Elatt =
Ecryst

Z
− Egas, (5.1)

where Ecryst is the energy of the molecular-crystal unit cell, Egas is the minimum energy

of the isolated molecule forming the crystal, and Z refers to the number of molecules

within the unit cell. For molecular dimers benchmarks of interaction energies can easily

be obtained by comparing with high-level coupled cluster [CCSD(T)] calculations at the

basis-set limit using several databases [28, 29]. Unfortunately, such theoretical bench-

mark calculations cannot be performed for a variety of molecular crystals due to the

computational cost of accurate coupled-cluster calculations. However, recent quantum

Monte Carlo results [106] indicate the possibility of highly accurate and well balanced

molecular crystal benchmark sets in the (near) future.

Currently, the quality of calculated lattice energies is often evaluated by comparison

to experimental sublimation enthalpies. One very well studied system is the benzene

crystal. The experimental lattice energy amounts to −55.3 ± 2.2 kJ/mol [55]. The

highest-level first-principles result available was calculated with a fragment coupled-

cluster approach by including two, three, and four-molecule interactions, yielding a

lattice energy of −55.9 ± 0.76 ± 0.1 kJ/mol [55]. The fragment hybrid many-body

interaction model (HMBI) based on CCSD(T) provides a lattice energy of −53.0 kJ/-

mol [107, 108] and the periodic local MP2 approach leads to a lattice energy of−56.6 kJ/-

mol [109]. This shows that all calculations using post-HF methods provide an excellent

agreement with experimental data for the benzene crystal. in contrast, the widely used

density functional B3LYP [110–112] without any dispersion correction yields a lattice

energy of only −15.9 kJ/mol, which corresponds to an error of almost 40 kJ/mol [113].

Therefore, it is imperative to include a proper description of vdW interactions in DFT

calculations. The PBE+MBD and PBE+XDM methods yield lattice energies of −55.0

and −49.5 kJ/mol, respectively [39, 40]. Furthermore, the lattice energy calculated with

PBE-D3 with and without three-body terms amounts to −51.0 and −54.8 kJ/mol, re-

spectively [114]. It can be seen that most vdW-inclusive DFT methods provide lattice

energies for the benzene crystal that are in excellent agreement with the experimental

value.

In 2012, Otero-de-la-Roza and Johnson assembled the so-called C21 benchmark set

containing 21 molecular crystals ranging from dispersion-bound to hydrogen-bonded

systems [39]. The experimental sublimation enthalpies were always back-corrected for
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vibrational contributions, yielding benchmark values for 0 K lattice energies. This bench-

mark set was later extended and refined by Reilly and Tkatchenko, yielding the so-called

X23 benchmark set [40]. For this benchmark set PBE+MBD yields systematically more

accurate lattice energies than PBE+TS. The largest difference between TS and MBD is

found for the vdW-bound systems. In addition, switching from the GGA functional PBE

to the PBE0 hybrid functional leads again to a consistently better description of the lat-

tice energy. The TS method consistently overestimates lattice energies, yielding a mean

absolute error (MAE) of 10.0 kJ/mol for PBE0+TS. For PBE0+MBD the corresponding

MAE amounts to only 3.8 kJ/mol, placing it within the 4.2 kJ/mol (1 kcal/mol) win-

dow of chemical accuracy. The D3 dispersion correction has also been tested for several

functionals with the X23 benchmark set [114]. The best performance was achieved for

TPSS-D3 without three-body terms, also yielding an MAE of 3.8 kJ/mol.

Nyman et al. [56] have recently studied the accuracy of several force fields widely

used in CSP calculations for the X23 benchmark set. The resulting deviations in lattice

energies are about 2-3 times larger than the best vdW-inclusive DFT methods. These

deviations are reasonable in the context of using such force fields in early or intermediate

stages of CSP calculations but not always sufficient for correctly predicting the rank

ordering of polymorphs. Furthermore, it should be noted that such force-field approaches

are often parameterized for a limited number of atom types and environments and hence

not very transferable.

All of the above benchmarks are for absolute lattice energies. However, for CSP

calculations we are mainly interested in relative stabilities. The C21 and X23 test sets

include two polymorphs of oxalic acid. Experimentally [115, 116], the α polymorph is

slightly more stable than the β form (by 0.2 kJ/mol). The DFA methods discussed above

yield energy differences ranging from about −4 kJ/mol to 4 kJ/mol. For PBE0+TS the

β form is more stable by about 1.5 kJ/mol, while PBE0+MBD predicts that the α

form is more stable by about 1 kJ/mol, which is consistent with experiment. Moreover,

the relative stability of three glycine polymorphs has been studied for several vdW-

inclusive DFAs by Marom et al. [117]. Only PBE0+MBD was able to capture correctly

the qualitative stability ranking, while PBE+TS, PBE0+TS, and PBE+MBD yielded

a different qualitative picture. The resulting error in the calculated relative stabilities

amounts to about 1 kJ/mol for PBE0+MBD. All these benchmarks suggest that high-

level vdW-inclusive DFAs are necessary for accurate relative stabilities and that the

stability ranking of polymorphs within an energy window of 1-2 kJ/mol remains a chal-

lenge. However, it is important to remember though that the experimental reference

values for polymorph and absolute stabilities are also associated with an uncertainty,

and that the often-used back correction of experimental sublimation enthalpies intro-

duces an additional uncertainty in these benchmarks.

5.2 Geometries

As with lattice energies, there is currently no high-level first-principles benchmark set

available for geometries of various molecular crystals. Therefore, we have to compare
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the theoretically optimized structures with experimental crystal structures, usually mea-

sured by X-ray diffraction. However, all experimental structures are determined at finite

temperatures, whereas theoretical geometry optimizations correspond to 0 K and also

do not include zero-point effects. Most molecular crystals expand with increasing tem-

perature and even the zero-point vibrations alone can lead to a volume expansion of

about 3%, which will be shown later on for phase-I ammonia. One approach to com-

bat this is to benchmark theoretical structures against the lowest-possible temperature

structure available from experiment, minimizing the influence of thermal effects. The

lattice vectors obtained with PBE+TS and PBE+MBD optimizations for a subset of

the X23 test set show mean relative errors of −0.55% and −0.75%, respectively [40].

Moellmann and Grimme [114] have studied the structures of the C21 set by using PBE-

D3 and TPSS-D3, yielding mean relative errors in the cell volume of −1.1% and −2.3%,

respectively. Calculated structures have typically a smaller volume compared to exper-

iment, mostly likely due to neglecting thermal expansion [40, 118]. Schatschneider et

al. [118] have studied the structures of a large set of crystalline polycyclic aromatic hy-

drocarbons using PBE+TS, yielding on average an error of about ± 2% for the lattice

vectors. Most of the room temperature experimental densities agree within 5% with the

calculated densities, while for lower temperatures the agreement improves to an average

deviation of 2.3% [118]. The main reason for the observed overestimation of the densities

is again the neglect of any temperature or zero-point effect in the geometry optimiza-

tion. The most-recent blind test of molecular CSP methods [51] has also shown that

several first-principles methods are able to predict structures in very good agreement

with experimental geometries.

5.3 Temperature and Pressure

The lattice energies discussed so far contain only total energies (electronic energy and

nuclear repulsion); from now on abbreviated with Etot. These energies do not depend

on temperature and pressure and are therefore only valid at a temperature of 0K and

a pressure of 0 bar. Strictly speaking, we are not even describing 0K correctly, as

vibrational zero-point energies are missing. While this might sometimes be a reasonable

approximation for small isolated molecules in vacuum, temperature and pressure effects

can be crucial for the accurate modeling of molecular crystals.

In order to include temperature effects we need to calculate the Helmholtz free energy

F (T, V ), given by

F (T, V ) = Etot(V ) + Fvib(T, V ), (5.2)

where Fvib(T, V ) is the vibrational free energy due to the nuclear motion on the Born-

Oppenheimer energy surface, T describes the temperature, and V is the unit-cell volume

of the molecular crystal. In principle, there are additional contributions to F (T, V ), such

as the electronic free energy [119] and magnetic contributions. However, these effects

can normally be neglected for insulating molecular crystals. Furthermore, we assume

that we are always dealing with a perfectly periodic molecular crystal. The existence
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of defects or disorder would also introduce additional terms in F (T, V ). The effect of

pressure can be readily included by calculating the Gibbs free energy of the crystal:

G(p, T ;V ) = F (T ;V ) + pV, (5.3)

where p is an external hydrostatic pressure acting on the unit cell.

In the following sections we will discuss the basics of approximations for includ-

ing thermal effects with the aid of a simple model system — phase-I deutero-ammonia

(ND3). In addition, we also discuss how vdW interactions influence the results. All

calculations for this model system were performed within the all-electron DFT code

FHI-aims [74, 120–122], utilizing the tight species default settings and phonopy, a code

for phonon calculations [123]. More computational details are provided at appropriate

places throughout this chapter.

5.4 The Harmonic Approximation

As discussed in Chapter 4, the simplest way to calculate the Helmholtz free energy is the

so-called harmonic approximation (HA). The harmonic Helmholtz free energy is then

given by

FHA(T ) = Etot + FHA
vib (T ), (5.4)

with

FHA
vib (T ) =

∫
dω g(ω)

~ω

2
+

∫
dω g(ω) kBT ln

[
1− exp

(
− ~ω

kBT

)]
, (5.5)

where g(ω) is the phonon density of states (pDOS) , i.e., the number of vibrational

states at a certain frequency. The first integral in equation 5.5 describes zero-point vi-

brations, which are present in every quantum system even at a temperature of 0K, while

the second integral describes thermally induced vibrations and includes the vibrational

entropy. Note that this term is particularly important for low-frequency vibrations, as

the right part of the second integral is largest in magnitude for low frequencies (see Fig.

5.2). If a phonon calculation is performed by using the finite differences approach, there

are several technical aspects one must consider. First, the size of the atomic displace-

ments used must be tested carefully, as it is system dependent and also depends on the

accuracy of the forces from the used electronic-structure code. The displacements must

be large enough to not cause numerical errors in the forces but small enough to still

be in the harmonic regime. In our ND3 case, displacements between 0.001 to 0.01 Å

yielded consistent results with a force accuracy of 10−4 eV/Å, therefore we have applied

displacements of 0.005 Å for all calculations. Secondly, a large enough (super)cell has to

be used so that the effect of one atomic displacement does not produce artifacts between

periodic images. This was discussed for the X23 test set by Reilly and Tkatchenko [40]

with the conclusion that for these systems the used cell should extend at least about

9-10 Å in each direction. However, this should be evaluated carefully for the studied

system, especially for salts or molecular crystals involving heavier halogens. All of the

calculations presented here were performed by using a 2×2×2 supercell. For numerical
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Figure 5.2: The temperature-dependent factor in the second integral of equation 5.5
vs. ω. Reproduced with permission from Ref. 13. Copyright 2016 John Wiley & Sons,
Ltd.

stability of the calculation it is important to ensure that the reciprocal-space sampling

in the supercell is exactly the same as in the optimized unit cell, i.e., if the unit cell was

optimized with a n × n × n k-point grid, a 2×2×2 supercell should have a n
2 × n

2 × n
2

k-point grid. In our ND3 example we have used a 4×4×4 k-grid for the optimization and

hence a 2×2×2 k-grid for the finite differences calculations using the mentioned super-

cell. Furthermore, the phonon density of states (pDOS) has to be evaluated with a dense

q-point grid in reciprocal space (or by calculating large supercells) in order to obtain

accurate free energies. We have used the program phonopy [123], which has interfaces to

most of the popular periodic electronic-structure codes. Finally, the results have to be

carefully analyzed for imaginary frequencies. The appearance of an imaginary frequency

at the Γ point indicates that the crystal is not in a local minimum of its PES and this

will have a large impact on the obtained free energies and low-frequency phonon modes.

Due to the acoustic sum rule, the three acoustic modes have to be zero at the Γ point.

However, small deviations are quite common due to the numeric nature of these calcu-

lations. Therefore, these three modes often have small imaginary frequencies, typically

less than 1 cm−1 in magnitude.

5.4.1 Harmonic Helmholtz free energies

Using harmonic Helmholtz free energies, the relative stabilities of polymorphs can be de-

termined for the desired thermodynamic conditions. It was shown by Marom et al. [117]
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and Rivera et al. [124] that zero-point energies can influence the calculated relative sta-

bilities of glycine polymorphs. The aspirin crystal has two polymorphs with degenerate

lattice energies, form I and form II, but form I is experimentally much more abundant.

Considering only harmonic zero-point energies, the free-energy difference between the

two polymorphs remains below 1 kJ/mol [42]. However, when considering FHA
vib at 300

K, form I becomes more stable by 2.6 kJ/mol when calculated with PBE+MBD. In the

case of PBE+TS, form II is more stable by 0.7 kJ/mol. This illustrates the importance

of both many-body dispersion interactions and Helmholtz free energies for the prediction

of polymorph stabilities.

5.4.2 Harmonic vibrational spectra

The pDOS provides information about all vibrational states within the molecular crys-

tal, i.e., it contains not only modes accessible by infra-red (IR) and Raman spectroscopy

(modes at the Γ point) but also out-of-phase phonon modes, which are long-range in-

termolecular modes. Fig. 5.3(a) shows the obtained pDOS for the ND3 crystal at the

respective optimized geometry of PBE, PBE+TS and PBE+MBD. The four peaks above

800 cm−1 correspond to the internal vibrations of the ammonia molecules inside the crys-

tal (see Chapter 4). The experimentally determined internal frequencies [125] for ND3

are shown as dashed lines in Fig. 5.3(a). It can be seen that these frequencies are nicely

captured by all three methods. In this frequency range all the vibrations involve large

energy changes, and therefore dispersion interactions play only a minor role for these

vibrations. The peaks below 500 cm−1 correspond to phonons (or lattice vibrations),

i.e., vibrations involving intermolecular motion. Most of these low-frequency modes cor-

respond to intermolecular librations and translations. If the molecules in a crystal have

freely-rotating functional groups, like methyl groups, these low-energy intramolecular

rotations can also occur in this frequency range. The low-frequency vibrations of ND3

are shown in detail in Fig. 5.3(b). It can be seen that there are qualitative differences,

as well as shifts, in the peak positions of the pDOS between PBE and the vdW-inclusive

methods. However, as our test system is a highly symmetric molecular crystal of a

small, rigid molecules, the differences are small and stem mostly from differences in the

optimized unit cells. For example, the unit-cell volume calculated with PBE is about

15% larger than with PBE+MBD, with the latter being closest to experiment.

In contrast, Fig. 5.4 shows the low-frequency pDOS for a cubic hexamethylbenzene

crystal (HMB) calculated for the three discussed methods at the experimental unit-

cell volume. HMB has more flexibility than ammonia due to its methyl groups and

the crystal is mainly held together by dispersion interactions. In this case, we observe

substantial differences in the pDOS between the different methods, even at the same

volume. To understand how important these differences are, Fig. 5.3(c) also shows an

experimental inelastic neutron scattering (INS) spectrum, measured at 15K [127]. As

an INS spectrum does not represent a generalized pDOS we cannot directly compare

the intensities but be can directly compare the position of the peaks (see the gray lines).

It can be seen that PBE+MBD reproduces the experimental peak positions quite well,

whereas the peaks of PBE and PBE+TS seem to be slightly shifted to higher frequencies.
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These spectra are compared at the experimental volume to allow for a direct comparison

in the absence of structural effects. The results are quite different if calculated at the

respective minima of Etot for each method. In this case, the PBE structure has a

significantly larger volume and therefore all peaks in the pDOS are shifted to lower

wave numbers. Comparing different methods and experiment can be very sensitive to

the temperature of the experiment and the unit cell used in calculating the spectra (see

Chapter 6).

Although differences between the pDOS calculated with different methods can seem

subtle they can be very significant. Motta et al. [128] recently calculated the pDOS

of a durene crystal and found that including dispersion (using PBE+TS) was essential

for obtaining a good agreement with a low-temperature INS spectrum, allowing for

the subsequent calculation of charge-transport properties. As noted above, the relative

ordering of the two known polymorphs of aspirin changes significantly when calculating

Helmholtz free energies with PBE+MBD or PBE+TS [42]. This can be traced to the

pDOS calculated with the two methods. For PBE+TS the two forms have comparable

spectra but in the MBD case, a peak is found at about 30 cm−1 for form I that is

completely missing in the TS case and was also not found in form II [42]. It is this

difference the pDOS of the two forms that leads to the changes in the calculated relative

Helmholtz free energies and to PBE+MBD rationalizing the experimental observation

of form I being more abundant.

In recent years, THz time-domain spectroscopy has emerged as very powerful tool

to detect drugs and explosives, as well as to distinguish between different polymorphs of

molecular crystals [129, 130]. THz spectroscopy detects only vibrational modes at the Γ

point and possesses the same selection rules as infrared (IR) spectroscopy. It is typically

used to study only the low-frequency phonon modes up to a few THz (1 THz = 33.4

cm−1), which are highly correlated with the crystal-packing arrangement of molecules

inside a molecular crystal.

When we compare the intermolecular modes at the Γ point for our ND3 example with

experimental measurements we observe, in general, deviations between 10 and 70 cm−1.

PBE always yields lower frequencies than the two vdW-inclusive methods. The reason is

probably the overestimation of the unit-cell volume in the case of PBE. Furthermore, we

are comparing calculated results without any consideration of thermal effects, while the

experimental measurements correspond to temperatures between 18 and 61 K. Already

at these temperatures, anharmonic effects due to thermal expansion and atomic motion

lead to significant frequency shifts. Reilly et al. [131] extensively studied the lattice

modes of ammonia and deutero-ammonia by using the harmonic approximation as well

as molecular-dynamics simulations. The observed difference between those methods

amounts to 15-30 cm−1 at 77 K.

The intensities of IR and THz spectra are proportional to the change of the dipole

moment p

IIR ∝
(
dp

dQ

)2

, (5.6)

where Q is a normal-mode coordinate. Calculation of IR intensities is much more in-

volved for periodic systems compared to isolated molecules in vacuum because there
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is no unique definition of the dipole moment for periodic systems and therefore the

calculation requires a Berry-phase approach [132]. However, this option is often not

available in electronic-structure codes. Therefore, the intensity of each mode can also

be obtained by calculating the difference between dipole moments of the unit cell cal-

culated from atomic charges, e.g., Hirshfeld or Mulliken charges. This unit-cell dipole

is then calculated for the ground state and for a geometry that is displaced along the

respective normal-mode coordinate. This method is usually referred to as the difference-

dipole method. Allis et al. [133] have applied this approach for a variety of DFAs in

order to calculate the THz spectrum of the explosive HMX. This study shows that

the THz modes highly depend on the DFA used. In recent years, vdW-inclusive DFT

has been used to study the THz spectra of a number of molecular crystals including

naproxen [134], naphthalene [135], durene [135], purine [136], α-D-glucose [137], enan-

tiomers of ibuprufen [4], isomers of benzenediols [138], and polymorphs of diclofenac

acid [139] and 2,4,6-trinitrotoluene [140]. In general, vdW-inclusive DFT methods pro-

vide better THz spectra than traditional DFAs but major differences can sometimes

be found between several vdW-inclusive methods. The best agreement between cal-

culated THz spectra in the HA and experimental measurements is found at very low

temperatures (< 10 K), where anharmonic effects are likely to be minimized. Nowa-

days, also low-frequency Raman spectra can be obtained experimentally for molecular

crystals, providing additional information about low-frequency vibrations. In this case

the intensity is related to the change in polarizability. Recently, it was shown for several

molecular crystals that vdW-inclusive DFT can also provide low-frequency Raman spec-

tra in good agreement with experiment [136, 141, 142]. In Chapter 6, we will discuss the

applicability of PBE+TS and PBE+MBD for the description of low-frequency spectra

of a purine crystal.

5.4.3 What is missing in the harmonic approximation?

The harmonic approximation enables us to calculate free energies and obtain vibra-

tional spectra. But what exactly are we missing in this approximation? As previously

discussed, we have omitted all higher-order terms in the Taylor expansion of the PES

(see Eq. 4.1). So how valid is this approximation? To answer that question we have

taken two representative modes of ND3 and calculated the PBE+MBD energy for sev-

eral displacements along the normal-mode coordinates (see Fig. 5.5). For a unitary

displacement the norm of the eigenvectors is equal to one. The mode in (a) shows an

intermolecular translation and the mode in (b) corresponds to an internal wagging mo-

tion. It can be seen for (a) that the HA provides good results for small displacements

from the equilibrium geometry but there are significant differences from the exact result

at larger displacements. We can see from the energy scale in (a) that only a few kJ/mol

are required to get into the anharmonic regime of that phonon mode. This suggests that

anharmonicity will be a serious issue for low-frequency phonon modes at high temper-

atures. Displacing along mode (b) requires much more energy compared to (a). In the

case of (b) it can be seen that the minimum of the harmonic curve does not correspond
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Figure 5.5: Harmonicity of two phonon modes in ND3 calculated with PBE+MBD.
The displacements are shown at a relative scale in which a displacement of 1 means that
the norm of the eigenvectors is equal to one. Reproduced with permission from Ref. 13.
Copyright 2016 John Wiley & Sons, Ltd.

to the minimum of the exact curve. Considering these anharmonic effects would lead to

a shift in the phonon-mode frequency.

Furthermore, the modes are described in the HA as independent oscillators, which

means that there are no interactions or coupling between them. In a system at finite

temperature the motion of the atoms inside the crystal will certainly not be constrained

to movements along normal-mode coordinates. Hence, in order to describe the atomic

motion correctly, one would need at least a superposition of several normal modes. An-

other serious problem is that we have only approximated our PES around the minimum

of the total energy Etot. As a result, the pDOS corresponds to exactly this geometry

and the free energy at finite temperatures also assumes that the structure of the sys-

tem does not change at all with temperature. Hence, it is not possible to observe or

model phase transitions in the HA. One effect often neglected is the thermal expansion

of molecular crystals. The volume of the unit cell will generally increase with increasing

temperature. Finally, it is not possible to describe charge transport with the HA since

phonon lifetimes and the thermal conductivity are infinite.

5.5 The Quasi-Harmonic Approximation

A straightforward way to improve upon the HA is the so-called quasi-harmonic approx-

imation (QHA) [143]. Therein, the HA is still applied but at several different unit-cell

volumes. We start with the HA at the minimum of Etot. Subsequently, the geometry of

the unit cell is optimized for several fixed unit-cell volumes V around the equilibrium

unit-cell volume and the HA is applied to each of these structures. In the QHA the free
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Figure 5.6: Phonon density of states of solid ND3 calculated with PBE at several unit-
cell volumes. Reproduced with permission from Ref. 13. Copyright 2016 John Wiley &
Sons, Ltd.

energy now depends explicitly on the unit-cell volume

FQHA(T, V ) = Etot(V ) + FHA
vib (T, V ), (5.7)

and therefore the pDOS also depends on the cell volume. Fig. 5.6 shows the dependence

of the low-frequency pDOS on the unit-cell volume for the ND3 crystal as described by

PBE. It can be clearly seen that, in general, peaks shift to smaller frequencies with in-

creasing volume and that the pDOS below 200 cm−1 changes significantly with increasing

volume.

The result of applying the QHA is that we now know for several unit-cell volumes

V the harmonic free energy as a function of the temperature T . Therefore, we can now

calculate the unit-cell volume corresponding to a specific temperature by fitting our data
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Table 5.1: Unit-cell volumes for ND3 phase I for several methods calculated via opti-
mization (opt), extracted from a quasi-harmonic approximation (nK) and optimization
under thermal pressure (pth). All volumes are given in Å3 while pth is in GPa. Repro-
duced with permission from Ref. 13. Copyright 2016 John Wiley & Sons, Ltd.

Method V (opt) V (2K) V (77K) V (180K) V (pth) pth

PBE 142.6 149.9 152.2 163.9 162.6 −0.52
PBE+TS 123.0 126.2 127.2 131.2 133.3 −0.58
PBE+MBD 123.8 127.9 128.6 132.5 131.8 −0.39
Exp. [145] - 128.6 130.6 134.6 - -

to an equation of state (EOS). The Murnaghan EOS [144] is often used for this purpose:

FQHA(V ) = F0 +
B0V

B′

0

[
(V0/V )B

′

0

B′

0 − 1
+ 1

]
− B0V0
B′

0 − 1
, (5.8)

where F0 is the equilibrium free energy for a certain temperature, V0 is the corresponding

equilibrium volume, B0 is the bulk modulus at equilibrium volume V0, and B′

0 is its

pressure derivative.

5.5.1 Thermal expansion

Fig. 5.7 shows the EOS fits for the model ND3 crystal, while the resulting unit-cell

volumes are compared with the experimental data in Table 5.1. At 2K the unit-cell

volume was measured experimentally as 128.6 Å3. It can be clearly seen that a simple

lattice optimization does not provide satisfactory results in terms of the unit-cell volume.

The PBE functional overestimates V by about 11% due to missing attractive interactions

between the molecules and the two vdW-inclusive methods underestimate V by about

4%. As discussed before, lattice optimizations do not take into account zero-point

vibrations, which results in most cases in slightly too small unit-cell volumes for vdW-

inclusive DFT [40]. The QHA includes zero-point vibrations and the DFA+vdW results

agree at 2K very well with experimental results; the error for PBE+TS and PBE+MBD

amounts to 1.9% and 0.5%, respectively. Note, that PBE alone shows now an error of

17%, which illustrates how neglecting thermal and zero-point effects can lead to spurious

cancellation of some errors. It also reinforces the importance of dispersion interactions

for the modeling of even a largely hydrogen-bonded system such as ammonia. Increasing

the temperature to 180K results in thermal expansion of about 5% [145]. PBE without

dispersion now shows an error of about 22% in predicting the unit-cell volume, while

PBE+TS and PBE+MBD provide a very reasonable description with errors being 2.5%

and 1.5%, respectively. The PBE+MBD results agree consistently better with the

experimental observations than the PBE+TS results.
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Figure 5.7: Quasi-harmonic approximation for solid ND3 calculated with different
methods at three different temperatures. The solid lines represent Murnaghan EOS fits
and the red triangles mark the corresponding minima. Reproduced with permission
from Ref. 13. Copyright 2016 John Wiley & Sons, Ltd.

It is also possible to include pressure effects by simply adding the pV term to FQHA,

which then becomes GQHA.

GQHA(p, T, V ) = Etot(V ) + FHA
vib (T, V ) + pV (5.9)

At ambient conditions pV is very small and is therefore neglected in our QHA calcu-

lations. If one wishes only to account for pressure effects without considering thermal

effects, an external hydrostatic pressure can be added to the stress tensor. For ex-

ample, Schatschneider et al. studied oligoacenes up to a pressure of 25 GPa using

PBE+TS [146]. This hydrostatic external pressure also enables one to approximate the

effect of thermal expansion. Describing the effect of F ha
vib(T, V ) utilizing the pV term

leads to

pth =
∂FHA

vib (T, V )

∂V
, (5.10)

where pth is a negative thermal pressure, which can be applied to the stress tensor during

optimization to mimic thermal effects. In a very crude approximation pth can be obtained

by finite differences using the free energies for a certain temperature of the optimized

unit cell and a slightly larger or smaller unit cell. In order to demonstrate this we have

calculated the thermal pressure for the ND3 model system for 180 K by considering only

the optimized unit cell and the closest available cell from the QHA, which has a larger

volume than the optimized cell. This thermal pressure was then applied during a lattice

relaxation. The obtained values for pth and the resulting volumes are shown in Table

5.1. It can be seen that the obtained volumes agree with the values from the QHA at

180K within 2%. Using this thermal-pressure approach, Otero-de-la-Roza and Johnson

found that for the C21 data set PBE+D2, PBE+TS, PBE+XDM, and vdW-DF2 yield
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5.5 The Quasi-Harmonic Approximation

mean absolute percentage deviations between 1.3 and 2.8% for cell lengths and between

0.1 and 0.3% for cell angles [39].

Recently, Heit et al. studied the thermal expansion of crystalline carbon dioxide

within the QHA using MP2 [147]. Up to a temperature of 195 K, they underestimated

the unit-cell volume by only 2–3% compared to experiment. Erba et al. have recently

reported the directional-dependent thermal expansion of the urea crystal studied within

the QHA by using several DFAs and different dispersion corrections [148].

The unit-cell volume corresponding to a specific temperature is determined by an

interplay between the 0 K total energies and the vibrational free energies. A measure for

the actual expansion of the crystal with temperature is the volumetric thermal expansion

coefficient αV , which can be written as

αV =
1

V

(
∂V

∂T

)

p

(5.11)

The knowledge of αV enables us to calculate also the heat capacity at constant pressure

(Cp), which can be directly compared with experimental calorimetric measurements. Cp

is given by

Cp = CV + αV (T )
2B(T )V (T )T, (5.12)

with B being the bulk modulus and CV can be calculated according to

CV = kB

∫
dω g(ω)

(~ω/kBT )
2 exp(~ω/kBT )

[exp(~ω/kBT )− 1]2
. (5.13)

Fig. 5.8 shows the calculated values for Cp and the linear thermal expansion coeffi-

cient α = αV /3 for our ND3 example compared to experimental values [149]. It can be

seen that PBE overestimates Cp at low temperatures and underestimates it at higher

temperatures, whereas α is constantly overestimated by about 100%. In contrast, the

vdW-inclusive methods underestimate Cp and α by about 20%. The only exception

is PBE+TS, which follows the experimental values at low temperature but starts un-

derestimating α at about 100K. This underestimation of thermal expansion has to be

expected, since we are neglecting anharmonic effects due to internal atomic motion.

5.5.2 Elastic properties

Another type of response property that is highly temperature dependent are the elastic

constants, which quantify the response of a crystal w.r.t. elastic deformation. The

elastic constant matrix C of a molecular crystal can be obtained by a Taylor expansion

around the equilibrium geometry [150]:

E(V, ǫ) = E0 + V0




6∑

i=1

σiǫi +
1

2

6∑

ij=1

Cijǫiǫj


 , (5.14)

where ǫ is the strain applied to the unit cell and σ is the corresponding stress of the unit

cell. The elastic constants can then be approximated by the second-order derivatives of
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Figure 5.8: Heat capacity at constant pressure (a) and linear thermal expansion
coefficient (b) of solid ND3 obtained from the QHA compared to experimental values
from Ref. 149. Reproduced with permission from Ref. 13. Copyright 2016 John Wiley
& Sons, Ltd.

the energy with respect to the applied strain:

Cij =
1

V0

∂2E

∂ǫi∂ǫj
. (5.15)

Furthermore, the elastic constants can also be obtained via the stress-strain relation

σ = Cǫ, (5.16)

where the elastic constant matrix is obtained by calculating the stress for several strained

unit cells. Often, the elastic constants are calculated based on the equilibrium geometry

and correspond therefore to 0K. Thermal effects can also be included in a simple quasi-

harmonic way by obtaining the unit-cell volume for the desired temperature from the

QHA and calculating the elastic constants for this structure. We will illustrate this

temperature dependence by using our ND3 model crystal. This example has a cubic

unit cell and therefore possesses only three unique elastic constants: C11, C12, and C44.

The first two constants are related to volumetric elasticity and C44 is related to shear

deformation. The bulk modulus B is an inverse measurement for the compressibility of

the molecular crystal and can be calculated for a cubic crystal as

B =
C11 + 2C12

3
. (5.17)
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Table 5.2: Elastic constants, bulk modulus, and anisotropy ratio for solid ND3 cal-
culated at the minima of Etot and at volumes corresponding to 194K according to
respective QHAs, compared to experimental values. Reproduced with permission from
Ref. 13. Copyright 2016 John Wiley & Sons, Ltd.

Method C11 [GPa] C12 [GPa] C44 [GPa] B [GPa] A

PBE(opt) 9.8±0.3 3.7±0.1 4.6±0.1 5.7 1.5
PBE+TS(opt) 15.6±0.4 6.8±0.3 8.3±0.1 9.8 1.9
PBE+MBD(opt) 15.6±0.2 6.4±0.1 8.7±0.1 9.5 1.9

PBE(194K) 3.5±0.2 1.6±0.1 1.3±0.1 2.3 1.4
PBE+TS(194K) 9.8±0.3 3.7±0.2 5.0±0.1 5.8 1.6
PBE+MBD(194K) 11.0±0.3 4.6±0.2 5.8±0.1 6.7 1.8

Exp(95K) [151] 10.0±0.5 5.6±1.0 5.6±0.4 7.1 2.5
Exp(194K) [152] 9.5±0.8 5.5±0.9 4.9±0.4 6.8 2.4

We have used the above mentioned stress-strain relationship for the calculation of our

elastic constants. Strains of ±1% and± 2% were applied to the unit cell and the resulting

elastic constants were determined via a least-squares fit. Calculated elastic constants for

PBE, PBE+TS and PBE+MBD are given in Table 5.2 and compared with experiment.

First, we compare the results for the optimized geometries with the experimental

values obtained at 95K. It can be seen that PBE underestimates the bulk modulus and

all elastic constants while both vdW-inclusive methods overestimate the experimental

values. Comparing the results obtained at the estimated unit-cell volumes at 194K with

the experimental results at 194K, we can see that all of the elastic constants decrease

with increasing temperature (and hence volume). The PBE bulk modulus is now almost

three times smaller than the experimental value, while the vdW-inclusive methods agree

very well with experiment. The deviation in the bulk modulus amounts to 1.0 GPa for

PBE+TS and only 0.1 GPa for PBE+MBD.

Another important elastic property of a crystal is the so-called Young’s modulus

Yi, which describes the tendency of deformation along a certain direction i. Yi can be

calculated according to

Yi =
σi
ǫi
, (5.18)

where σi describes an uniaxial stress acting in direction i and ǫi is the resulting axial

strain [153]. Fig. 5.9 shows spherical polar plots of the Young’s modulus [154–156] for

ND3. The plot for PBE is very isotropic while PBE+MBD is more anisotropic. If we

compare the plots of the optimized geometries with the experimental plot, one might

think that PBE is describing the Young’s modulus better than PBE+MBD, but when

we compare the values for 194K we can immediately see that vdW interactions have a

large influence on elastic properties. We can also measure the anisotropy of the elastic
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Figure 5.9: Spherical plots of the Young’s modulus of ND3 (in GPa) obtained at the
minima of Etot and at volumes corresponding to 194 K from the QHA for PBE and
PBE+MBD, as well as experimental values at 194 K of Ref. 152. Reproduced with
permission from Ref. 13. Copyright 2016 John Wiley & Sons, Ltd.

constants with the so-called anisotropy factor A, which is for cubic crystals given by

A =
2C44

C11 − C12
. (5.19)

It can be seen that PBE+MBD shows the largest anisotropy among the theoretical

values, but stills underestimates the degree of anisotropy compared to experimental

measurements, likely due to the lack of anharmonicity in calculating the elastic constants.

The use of DFAs for studying mechanical properties has grown in recent years. The

elastic properties of urea have been studied by Erba et al. in a quasi-harmonic fash-

ion yielding encouraging results for PBE, PBE0, and B3LYP when paired with the D3

dispersion correction [148]. The mechanical properties of the two aspirin polymorphs

have also been studied using PBE+TS and PBE+MBD [42]. Despite their near degen-

erate lattice energies and a free-energy difference of 2.6 kJ/mol, the two forms show

remarkably different elastic properties. As in the case of ND3, PBE+MBD also yields

more anisotropic elastic response for the two polymorphs of aspirin and smaller elastic

constants, agreeing better with experimental values.
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5.6 Summary

The modeling and prediction of molecular crystals utilizing first-principles methods has

significantly evolved in recent years. With the development of accurate vdW-inclusive

DFT methods, in particular, first-principles methods can now be applied to realistic

molecular crystals, leading to new insights and understanding of structure, stabilities,

polymorphism and response properties such as phonons and elastic moduli. This abil-

ity of first-principles methods to model these properties in an accurate, balanced and

transferable fashion will make methods such as vdW-inclusive DFT central tools for

predicting and engineering molecular crystals in future. Furthermore, high-level first

principles methods such as MP2 and beyond can already be applied to several molecular

crystals and encouraging progress is being made to enable the applications for realis-

tic systems in the future [54]. Also, the utilization of symmetry-adapted perturbation

theory for periodic systems will enable new insights into the nature of intermolecular

interactions in molecular crystals [157].

Current vdW-inclusive DFT approaches enable us to calculate lattice energies with

a accuracy better than 4.2 kJ/mol. Key to achieving this accuracy is to go beyond a

pairwise model of dispersion and include non-additive many-body contributions, for ex-

ample, by using the MBD method [37, 88]. A key aspect of modeling molecular crystals

is in understanding that all of their properties (including their structure) can be highly

temperature dependent. Many first-principles studies of molecular crystals treat them

in the harmonic limit. While this can give powerful insights, the harmonic approxi-

mation neglects anharmonic effects due to the expansion of the unit cell and thermal

motion. Omitting these effects when calculating derived properties and quantities such

as low-frequency vibrational spectra and elastic constants, can lead to large deviations

between experiment and theory, as we have shown using our model system of phase-I

deutero-ammonia. By just considering fully optimized structures, the experimental unit

cell-volume at 180 K of our deutero-ammonia example is overestimated by PBE and

underestimated by both vdW-inclusive approaches. An efficient way of accounting for

the effect of thermal expansion using first-principles methods is provided by the QHA.

Within this approximation, PBE+MBD is able to capture about 80 % of the thermal ex-

pansion, leading to an error in the unit cell volume of only 1.5 %. In contrast, pure PBE

within the QHA results in an overestimation of the unit cell volume by 22 %, illustrat-

ing once again the crucial nature of vdW interactions for molecular-crystal properties.

Accounting for thermal expansion is also crucial for the calculation of elastic properties.

For instance, within the QHA, PBE+MBD is able to describe the bulk modulus at 194

K with an accuracy of 1.5 % while using the fully-optimized structure leads to an error

of almost 40 %.
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Chapter 6

Low-Frequency Spectra of a Purine

Crystal

Low-frequency vibrational spectra enable the experimental distinction of molecular crys-

tal polymorphs, enantiomers, and isomers [129, 130]. Typically, these low-frequency

vibrations are measured via THz time-domain spectroscopy, while nowadays also ac-

curate low-frequency Raman spectra can be obtained for molecular crystals. For a

variety of different molecular-crystal systems, THz spectra have been computed using

vdW-inclusive DFT [4, 134–139]. Given the non-local nature of the phonons within this

frequency range, the results highly depend on the used DFA and dispersion model. These

calculations are mostly performed within the harmonic approximation, neglecting any

anharmonic effects due to thermal expansion and internal motion. Therefore, the cal-

culations are usually compared to low-temperature experiments, for which anharmonic

effects are minimal. However, real-life applications typically demand room-temperature

spectra. Regularly, empirical scaling factors [136, 158] are used for the obtained vibra-

tional frequencies in order to match the experimental observations. These scaling factors

should effectively iron out the error of the underlying DFA and the neglect of anharmonic

effects. While this is a convenient approach for improving the agreement with experi-

mental spectra, such an approach is not really helpful when predicting the spectrum of

a so far experimentally unknown molecular crystal. Recently, Ruggiero et al. [136] mea-

Figure 6.1: The unit cell of the studied orthorhombic purine crystal.
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sured room-temperature THz and low-frequency Raman spectra for the purine molecular

crystal (see Fig. 6.1). In addition, they also calculated the corresponding spectra uti-

lizing the QHA with the PBE-D3 approach. After applying a scaling factor or 0.85

their calculated frequencies had an mean absolute error (MAE) of only 3 wave numbers

w.r.t. the experimental measurements. In this chapter, we will discuss how well we

can describe the low-frequency vibrations of purine with our vdW models without the

usage of an empirical scaling factor. Therefore, we will also utilize the QHA and in ad-

dition estimate further anharmonic effects by utilizing Morse oscillators (see Chapter 4).

6.1 Computational Methods

First, the purine unit cell [159] was fully optimized with PBE+TS [34, 82] using light

(l) species default settings for basis functions and integration grids within FHI-aims [74,

120–122, 160–162]. These calculations were performed with a 2×4×9 k-grid and force

components were converged to 10−3 eV/Å. In addition, lattice optimizations were also

performed with external hydrostatic pressures of 0.4, 0.2, -0.2, -0.4, and -0.6 GPa in

order to obtain optimized structures with different unit cell volumes for the QHA. In

this case the sampled volume ranges from -2.5% to +4.5% w.r.t. the fully optimized unit-

cell volume. Next, the unit-cell volume corresponding to a temperature of 300 K was

determined via the QHA as described in Chapter 4. For the fully optimized structure

as well as the thermally expanded structure corresponding to room temperature, the

phonon modes at the Γ point were calculated within the harmonic approximation using

phonopy [123] together with FHI-aims. Finite displacements of 0.005 Å were calculated

for a 1×2×3 supercell utilizing a 2×2×3 k-grid. The relative infrared (THz) and Raman

intensities for each mode were calculated by finite displacements along the normal-mode

coordinates Q. The infrared (IR) intensity II and the Raman intensity IR of a normal

mode can be estimated with

II ∝
(
∂p

∂Q

)2

, and IR ∝
(
∂α

∂Q

)2

, (6.1)

with p being the dipole moment and α being the polarizability. While the dipole is not

uniquely defined in periodic systems, the change of the dipole moment using throughout

the same unit-cell definition is a well-defined quantity. The values of α are obtained

from the TS model (see Chapter 3). For the visualization of the vibrational spectra a

Gaussian broadening of 2.5 cm−1 was applied.

Furthermore, we want to estimate also anharmonic effects beyond the QHA. For

that we utilize Morse oscillators, which are discussed in detail in Chapter 4. Therefore,

the thermally-expanded room-temperature structure is displaced along normal-mode

coordinates so that the energy change amounts to ±0.5 kBT and ±kBT according to the

harmonic approximation, with kB being the Boltzmann constant and the temperature

T = 300 K. Next, the actual energies of all displaces structures are calculated using

PBE+TS using the same settings as described above. Then, a Morse potential [104, 105]
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6.2 Calculated Low-Frequency Spectra

is fitted for every mode. The Morse potential is given by

V (x) = D
(
1− e−a(x−x0)

)2
, (6.2)

with x being the displacement amplitude, and the parameters D, a, and x0 describe the

well depth, the width of the potential, and the minimum of the potential, respectively.

The corresponding frequency ω for the excitation from the ground state to the first

vibrationally-excited state can be calculated according to

ω = ω0 − 2ω0xe, (6.3)

with

ω0 =

√
2Da2

µ
(6.4)

and

xe =
~ω0

4D
, (6.5)

where µ describes the reduces mass. Replacing the harmonic oscillators by Morse oscil-

lators leads to a frequency shift but the obtained intensities remain unchanged.

Furthermore, we also want to study what effect MBD interactions, exact exchange,

and a larger basis set have on the obtained vibrational spectra. Therefore, all further

on described calculations were performed with PBE+MBD and PBE0+MBD utilizing

light (l) species default settings, and PBE+MBD using tight (t) species default set-

tings. Other computational settings are identically to the above described calculations.

However, we will rely for these calculations on the room-temperature unit-cell volume

obtained with PBE+TS within the QHA. Therefore, lattice optimizations were only

performed without external pressure and with a hydrostatic pressure of -0.4 GPa. The

lattice constants corresponding to the above determined volume were obtained via lin-

ear regression from the two respective optimizations. Next, the geometries for the so

obtained unit cells were optimized and the vibrational spectra utilizing Morse oscillators

were calculated as described above. For MBD calculations, the polarizability used for

the calculation of Raman intensities is obtained directly from the MBD approach.

6.2 Calculated Low-Frequency Spectra

First, we discuss the three different approximations considered using the PBE+TS

method. The obtained spectra are shown in Fig. 6.2 and the relevant phonon fre-

quencies are listed in Tab. 6.1. Within this table we compare the obtained IR and

Raman-active phonon frequencies with experimental peak maxima. In almost all cased

the corresponding experimental frequency can be easily identified. However, the second

and third IR-active modes are in close proximity in our calculations. In the experiment,

the third IR-active mode has a larger intensity than the second one. Therefore, we com-

pare the calculated mode with larger intensity to the third experimental IR frequency.
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6 Low-Frequency Spectra of a Purine Crystal

Table 6.1: Obtained IR and Raman active PBE+TS phonon frequencies for the fully
optimized structure within the harmonic approximation (Opt./HA), for the thermally
expanded unit cell within the harmonic approximation (QHA/HA), and for the thermally
expanded unit cell using Morse oscillators (QHA/Morse) compared with experimental
measurements [136]. Furthermore, the mean absolute error (MAE) and the maximum
absolute error (MAX) w.r.t. experimental measurements are given.

Exp. Opt./HA QHA/HA QHA/Morse

IR 41.4 46.6 41.6 43.1
Raman 46.4 46.6 41.6 43.1
IR 47.1 59.6 52.3 49.7
IR 52.0 56.7 49.3 51.3
IR 59.3 79.9 70.3 67.0
Raman 66.2 79.9 80.0 74.8
IR 73.4 85.6 75.4 75.5
Raman 99.5 107.1 102.8 97.4
Raman 110.5 135.4 126.7 122.1

MAE - 12.7 7.5 5.2
MAX - 24.9 16.2 11.6
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Figure 6.2: Obtained PBE+TS low-frequency THz/IR (left) and Raman (right) spec-
tra for the fully optimized structure within the harmonic approximation (Opt./HA),
for the thermally expanded unit cell within the harmonic approximation (QHA/HA),
and for the thermally expanded unit cell using Morse oscillators (QHA/Morse) com-
pared with experimental measurements (Exp.) [136]. The individual spectra are offset
for clarity.
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Let us start with the commonly used harmonic approximation on top of the fully

relaxed structure. In this case we observe significant deviations from the experimental

observations. The mean absolute error (MAE) w.r.t the experiment amounts to 12.7

cm−1 with the maximum absolute deviation (MAX) being 24.9 cm−1. It can be seen

that in this case all frequencies are significantly overestimated. Since we did not include

any thermal expansion in this approach, we underestimate the room-temperature unit

cell volume by about 3%. The largest error in the individual lattice constants amounts

to about 2%. Next, we move on to the thermally expanded structure according to the

QHA. In this case our obtained unit cell volume agrees very well with the experimentally

measured one; the error amounts to only 0.3%. It can be seen that all peaks shift now to

lower frequencies due to thermal expansion of the crystal. Now, the simulated spectrum

is already in better agreement with experiment, with a MAE of 7.5 cm −1 and a MAX

of 16.2 cm−1. Replacing now the harmonic oscillators with Morse oscillators leads to

a further improvement of the peak positions, with a MAE of 5.2 cm−1 and a MAX of

11.6 cm−1. This result shows that it is possible to obtain accurate phonon frequencies

for this system, even without the usage of empirical scaling factors.

The calculated IR intensities are in a relatively good agreement with the experimental

spectrum but for the Raman intensities there are significant differences. For example the

intensity of the second Raman-active mode is significantly underestimated. However, our

main focus in this chapter lies on the accuracy of the phonon frequencies. Our Raman

intensities here are approximated by finite differences for the polarizability as described

by the TS model. Furthermore, the Morse oscillator leads to a shift in the frequency,

while the intensities are the same as for the harmonic approximation. Therefore, we

cannot expect to obtain completely accurate intensities given our used approximations.

However, the obtained intensities correctly identify IR and Raman-active modes. Note

that a more accurate description of the intensities can be obtained by using for example

the Coupled-Perturbed Kohn-Sham method [163–165] as shown in Ref. 136.

Furthermore, we also analyze what impact MBD interactions, exact exchange, and

a larger basis set have on the resulting spectra. All these calculations were performed

at a unit cell volume of 532.5 Å3, which is the room-temperature volume obtained with

PBE+TS via the QHA. The obtained harmonic frequencies are listed in Table 6.2, while

the Morse frequencies are given in Table 6.3. The vibrational spectra obtained via Morse

oscillators are shown in Fig. 6.3. It can be seen that all shown methods yield relatively

similar results. At the harmonic level, the MAE varies from 6.8 cm−1 (PBE+MBD/t)

to 7.5 cm−1 (PBE+TS/l) and the maximal observed deviation varies from 15.8 to 18.4

cm−1. At the Morse level the MAE varies from 4.8 cm−1 (PBE+MBD/t) to 5.2 cm−1

(PBE+TS/l) and the maximal observed deviation varies from 8.8 to 11.6 cm−1. The

applied Morse model improves consistently for all methods the MAE as well as the MAX.

The improvement over the harmonic treatment amounts to about 2 cm−1 for the MAE

and the maximum absolute deviation improves significantly by 30-45 %.
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Figure 6.3: Obtained low-frequency THz/IR (left) and Raman (right) spectra for
PBE+TS/l, PBE+MBD/l, PBE0+MBD/l, and PBE+MBD/t compared with experi-
mental measurements (Exp.) [136]. All calculations were performed at a unit cell volume
of 532.5 Å3 and Morse oscillators were used throughout. The individual spectra are offset
for clarity.

Table 6.2: Obtained IR and Raman active PBE+TS phonon frequencies for
PBE+TS/l, PBE+MBD/l, PBE0+MBD/l, and PBE+MBD/t within the harmonic ap-
proximation compared with experimental measurements [136]. All calculations were
performed at a thermally expanded unit cell volume of 532.5 Å3. Furthermore, the
mean absolute error (MAE) and the maximum absolute error (MAX) w.r.t. experimen-
tal measurements are given.

Exp. PBE+TS/l PBE+MBD/l PBE0+MBD/l PBE+MBD/t

IR 41.4 41.6 41.6 43.4 42.2
Raman 46.4 41.6 41.6/49.5 43.4/50.9 42.2/50.2
IR 47.1 52.3 51.7 51.4 53.1
IR 52.0 49.3 49.5 50.9 50.2
IR 59.3 70.3 69.6 70.1 70.5
Raman 66.2 80.0 84.6 82.0 82.2
IR 73.4 75.4 78.4 77.9 78.2
Raman 99.5 102.8 97.0 97.4 97.5
Raman 110.5 126.7 121.6 122.6 120.1

MAE - 7.5 7.4 6.9 6.8
MAX - 16.2 18.4 15.8 16.0
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Table 6.3: Obtained IR and Raman active PBE+TS phonon frequencies for
PBE+TS/l, PBE+MBD/l, PBE0+MBD/l, and PBE+MBD/t using Morse oscillators
compared with experimental measurements [136]. All calculations were performed at a
thermally expanded unit cell volume of 532.5 Å3. Furthermore, the mean absolute error
(MAE) and the maximum absolute error (MAX) w.r.t. experimental measurements are
given..

Exp. PBE+TS/l PBE+MBD/l PBE0+MBD/l PBE+MBD/t

IR 41.4 43.1 41.3 44.6 38.3
Raman 46.4 43.1 41.3/49.0 44.6/52.2 38.3/46.7
IR 47.1 49.7 49.4 49.8 49.7
IR 52.0 51.3 49.0 52.2 46.7
IR 59.3 67.0 66.6 68.2 65.5
Raman 66.2 74.8 76.6 75.0 75.0
IR 73.4 75.5 77.4 77.9 73.1
Raman 99.5 97.4 93.0 95.4 91.2
Raman 110.5 122.1 115.6 118.1 110.2

MAE - 5.2 5.0 5.1 4.8
MAX - 11.6 10.4 8.9 8.8

6.3 Summary

This chapter has shown that accurate phonon frequencies can be obtained with vdW-

inclusive DFT even without the utilization of an empirical scaling factor. The harmonic

approximation on top of fully-optimized structures is insufficient for the calculation of

low-frequency vibrational spectra at room temperature. The QHA already significantly

improves the description. Furthermore, our introduced Morse oscillator model is able

to further improve the frequencies for all shown methods, leading to a MAE of about

5 cm−1. This illustrates the usefulness of this model and also indicates that it should

improve the description of vibrational free energies. All the studied methods yield rather

similar MAEs when the Morse model is applied. Therefore, PBE+TS or PBE+MBD

calculations on the light level will probably be sufficient for similar crystals. However,

for flexible or more polar molecular crystals the usage of a larger basis set and/or a

hybrid functional might be required.
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Chapter 7

Time-Resolved THz Spectroscopy of

an Aspirin Crystal

In the previous chapter we have discussed the calculation of low-frequency vibrational

spectra for one molecular crystal. Nowadays, accurate THz spectra can be measured

also in a two-dimensional (2D) time-dependent fashion, allowing for the observation of

the THz response of a certain sample. Recently, such a 2D spectrum was measured

for an aspirin crystal and we utilized our PBE+MBD framework to provide a qualita-

tive interpretation of the experimental observations. This study has been published in

Physical Review Letters [166]. The author of this thesis contributed to that paper all

first-principles calculations using PBE+MBD, which are described in this chapter. The

experimental THz spectra were measured by Giulia Folpini from the Max-Born-Institut

für Nichtlineare Optik und Kurzzeitspektroskopie in Berlin.

7.1 Background

Two-dimensional (2D) spectroscopy in the THz regime (≈ 1-25 THz) allows for the study

of ultrafast dynamics and to uncover couplings between different excitations [167, 168].

Herein, our focus lies on the low-end of the THz regime, where we observe mostly phonon

excitations. 2D spectra are typically measured in the so-called pump-probe approach.

First, a laser pulse is used to excite the sample, i.e., to create a non-equilibrium state.

Then, a second pulse is applied after a specific time interval to measure the THz spec-

trum at that moment in time. Performing these measurements for a variety of different

relaxation times provides information about the response of the system to the applied

THz excitations.

Here, we discuss a 2D spectrum of aspirin (acetylsalicylic acid) form I (see Fig. 7.1).

It is noted in passing that aspirin was long believed to exist only in this form. However,

a second less common form was predicted [169] and later experimentally confirmed [170].

Reilly and Tkatchenko have studied low-frequency vibrations in both forms of aspirin

applying the MBD method [42]. They found a coupling between low-frequency phonon

modes and collective electronic fluctuations, which lead for form I to a shift of phonon
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7 Time-Resolved THz Spectroscopy of an Aspirin Crystal

Figure 7.1: Unit cell of aspirin form I.
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Figure 7.2: Measured linear absorption of the aspirin sample at T = 80 K (a) and the
amplitude spectra of applied pulses A and B (b). Data from Ref. 166.

frequencies to smaller frequencies. The experimentally measured linear THz spectrum

of aspirin at 80 K is shown in Fig. 7.2(a) [166]. The main peaks are located at 1.8,

2.3, and 2.8 THz, and a small feature is detected at 1.1 THz. These results are in good

agreement with previous measurements [171]. The 2D THz spectra revealed that the

peak originally located at 1.1 THz experiences a blueshift to 1.7 THz upon nonlinear

absorption [166]. The frequency distribution of the two used pulses is shown in Fig.

7.2(b). In this chapter, we try to rationalize this peak shift based on PBE+MBD first-

principles calculations.
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7.3 Computational Methods

7.2 Computational Methods

The PBE+MBD [35, 64, 82] method was used throughout utilizing the all-electron code

FHI-aims [74, 120–122]. The unit cell of aspirin form I was optimized with the light

species default settings for basis functions and integration grids using a 3× 6× 3 k-grid.

Force components were converged to 10−3 eV/Å. All phonon calculations were carried

out within the harmonic approximation utilizing phonopy [123]. The finite displacement

calculations were performed with displacements of 0.005 Å using a 1 × 2 × 1 supercell,

ensuring a length of at least 11 Å in each direction in order to avoid artifacts. Further-

more, a 3× 3× 3 k-grid was used for the supercell calculations employing light species

default settings and a force accuracy of 10−5 eV/Å.

In order to model the THz response of the crystal, we calculated the THz spectra for

the optimized structure and several appropriately modulated structures. In the latter

case, the optimized structure was displaced along a linear combination of normal modes,

which corresponds to the amplitude spectra of the used THz pulses shown in Fig. 7.2.

We used the average of both spectra and the magnitude of the modulation is always

described in terms of the maximum displacement within this linear combination. For

individual normal modes at the Γ point the displacement δi of atom i was calculated

according to

δi =
A√
N mi

ei, (7.1)

where A describes the displacement amplitude, N is the number of atoms in the cell, and

mi refers to the mass of atom i in atomic mass units (amu), as implemented in phonopy.

The vector ei describes the part of the normalized eigenvector, which belongs to atom i.

The magnitude of the used displacement amplitude A for each mode is determined by

the spectra shown in Fig. 7.2. We studied five different modulated structures, for which

the maximum displacement amplitudes (Amax) varied between 0.1 and 4 Å
√
amu. The

intensities of the THz (far-IR spectra) were calculated as described in Chapter 6 by finite

differences using a displacement amplitude A = 1 Å
√
amu and a Gaussian broadening

of 0.03 THz was applied.

7.3 THz Response of Aspirin Form I

The so obtained THz spectra for the optimized structure and all considered modulated

structures are shown in Fig. 7.3. It can be seen that our calculated THz spectrum

for the optimized geometry agrees quite well with the experimentally obtained linear

absorption spectrum. All peak positions agree within around 0.2 THz. Such small

deviations from the experimentally observed spectrum are expected since we did not

consider any anharmonic effects for the phonon frequencies and neglected the thermal

expansion of the unit cell. Our obtained unit cell volume differs from the experimentally

measured unit cell at 100 K [172] by less than 2 %. We note here that no empirical scaling

factor was applied to the frequencies and that our obtained peaks located at 1.1 and 1.3

THz will both contribute to the measured peak at 1.1 THz (see Fig. 7.2(a)). We have
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Figure 7.3: THz spectra for the optimized structure of aspirin form I and for all studied
modulated structures. The shown spectra were normalized to the largest observed inten-
sity within the plotted spectral range and offset for clarity. Reprinted with permission
from Ref. 166. Copyright 2017 by the American Physical Society.

visualized IR-active low-frequency modes of the optimized structure in Fig. 7.4. It can

be seen that these modes are a mixture between the expected intermolecular translations

and rotation at this frequency range, and concerted motions involving methyl groups.

This was attributed to plasmon-phonon coupling [42]. The mode located at 1.3 THz

involves particularly pronounced methyl group rotations.

Fig. 7.3 shows that peaks generally shift to larger frequencies (blue shift) with in-

creasing modulation. For the peak of the optimized structure initially located at 1.3

THz, we observe a constant blue shift with increasing modulation, at a modulation with

Amax = 4 Å
√
amu it is located around 1.7 THz. Furthermore, this mode experiences the

largest blue shift among the studied modes. These findings are in qualitative agreement
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Figure 7.4: Lowest-frequency IR-active phonon modes of the optimized aspirin struc-
ture located at 1.08 THz (a), 1.31 THz (b), 1.66 THz (c), 1.89 THz (d), 2.06 THz (e),
and 2.24 THz (f). The mass-weighted displacement vectors (blue) represent the direc-
tion and the relative magnitude of the atomic motion. Reprinted with permission from
Ref. 166. Copyright 2017 by the American Physical Society.
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Figure 7.5: Representative phonon mode within the blue-shifted peak initially located
at 1.3 THz for the optimized structure and all modulated structures: a) optimized
structure (1.31 THz); b) Amax = 0.1 Å

√
amu (1.33 THz); c) Amax = 0.5 Å

√
amu (1.38

THz); d) Amax = 1.0 Å
√
amu (1.43 THz); e) Amax = 2.0 Å

√
amu (1.49 THz); f) Amax =

4.0 Å
√
amu (1.67 THz). The mass-weighted displacement vectors (blue) represent the

direction and the relative magnitude of the atomic motion. For systems in which more
than one mode contribute to this peak, one representative mode is shown. Reprinted
with permission from Ref. 166. Copyright 2017 by the American Physical Society.
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7.4 Summary

Figure 7.6: Overlay of the unit cell of the optimized structure (gray) with the distorted
structures of a maximum displacement amplitude of 0.1 (black), 0.5 (orange), 1 (red),
2 (blue), and 4 Å

√
amu (green). Reprinted with permission from Ref. 166. Copyright

2017 by the American Physical Society.

with the experimental observations. We have visualized in Fig. 7.5 how the phonon

mode of the discussed peak changes with modulation. It can be clearly seen that the

observed hindered methyl-group rotations change their symmetry and decrease in mag-

nitude with increasing modulation of the underlying structure. Finally, we analyze the

change in the structure that leads to the observed modification of phonon modes and

hence to the frequency shifts. Therefore, Fig. 7.6 shows an overlay of all modulated

structures with the optimized unit cell. It can be seen that the main geometrical change

upon modulation is the modification of methyl group torsion angles. For the modula-

tions considered here the differences to the optimized structure vary from 0.2◦ and 11◦.

7.4 Summary

In summary, we have shown that our applied PBE+MBD calculations are able to quali-

tatively describe the experimentally-observed THz response of the studied low-frequency

mode. In case of the optimized structure this mode contains a combination of intermolec-

ular translations/rotation with concerted methyl-group motions. The latter motions

decrease with increasing modulation of the structure, leading to the observed frequency

shift to higher wave numbers. While this obtained result is in qualitative agreement with

the experimental observations, more sophisticated time-dependent calculations would be
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necessary for studying the THz response in an accurate and reliable way. One could en-

vision a model system based on quantum Drude oscillators [173–175] which couples

the electronic and vibrational degrees of freedom in a similar fashion as Venkataram et

al. [176].
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Part III

Crystal Structure Prediction
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Chapter 8

Sixth Blind Test of Organic Crystal

Structure Prediction Methods

After having discussed the modeling of properties for already known crystal structures,

we turn now to the discussion of organic crystal structure prediction. One important

measure of the quality of an organic crystal structure prediction (CSP) procedure are

the regular blind tests organized by the CCDC. The most recent sixth blind test in-

cluded five quite diverse target systems and the results have been published in Acta

Cryst. B [51]. This chapter discusses our contribution to this blind test (Submission

25: Johannes Hoja, Hsin-Yu Ko, Roberto Car, Robert A. DiStasio Jr., and Alexandre

Tkatchenko). A part of the described calculations was performed by Hsin-Yu Ko from

Princeton University.

8.1 Background

This sixth CCDC blind test features five target systems, which are shown in Fig. 8.1.

This quite divers set of systems includes a small rigid molecule, a flexible highly poly-

morphic molecule, a salt, a co-crystal, and a fairly large molecule. Within this blind test,

participants were only provided with the chemical diagram of the involved molecules.

Each participating group could submit for every system two separate lists of up to 100

structures, ranked according to their relative stabilities with rank 1 being the most sta-

ble structure. After the submission deadline, these structures were compared to the

experimentally obtained crystal structures using geometrical criteria.

Our submission focuses on the accurate calculation of relative stabilities, which is

the final part of a full CSP. Therefore, we rely for the crystallographic space sampling on

an initial structure set provided by the group of Sarah L. Price at the University College

London. On top of these structures we apply a hierarchical procedure which stepwise

reduces the number of considered structures and improves the description of structures

and stabilities utilizing vdW-inclusive DFT.
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Figure 8.1: The five target systems of the sixth CCDC blind test.

8.2 Computational Methods

For every target system we start with an initial structure set of 1000 low-energy struc-

tures, which was provided by the Price group: Rebecca K. Hylton (XXII), Louise S.

Price (XXIII), Rui Guo (XXIV), Rona E. Watson (XXV), and Luca Iuzzolino (XXVI).

These initial structures were created by a quasi-random search within the CrystalPre-

dictor [177, 178] software and energies were then evaluated using a distributed multipole

analysis [179] and an atom-atom empirical potential for the description of exchange re-

pulsion and dispersion interactions [180]. The initial structure set for system XXIV and

XXV included also a further optimization with the CrystalOptimizer software [181]. For

more details the reader is referred to the Supporting Information of Ref. 51 (Submission

18).

Starting with this sets of 1000 likely structures, we employed a hierarchical procedure,

which is illustrated in Fig. 8.2. First, we calculated an initial energy ranking for all 1000

structures without any geometry optimization utilizing the PBE [82] functional supple-

mented by the pairwise TS [34] dispersion model. These and all subsequent electronic

structure calculations were performed using the all-electron code FHI-aims [74, 120–122].

For this initial energy ranking we applied the so-called light species default settings (l)

for integration grids and basis functions within FHI-aims. Subsequently, the structures

were ranked according to their relative stability per molecule and geometry optimiza-

tions with fixed lattice parameters were performed for the 200 most-stable structures.

This optimization was also done at the PBE+TS/light level and force components were

converged to 10−3 eV/Å. Next, full lattice relaxations without any symmetry constrains

were performed for the top 100 structures using the same settings as before. Then, the

energies of these 100 structures were calculated on top of the PBE+TS-optimized struc-

tures using PBE+MBD [35, 64] with tight species default settings. For system XXIII

duplicate structures were removed, yielding 31 structures. The relative stabilities at this

stage constitute our first submitted lists.
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Initial structures

Best 1000 structures according to force-field description

Initial energy ranking

of all 1000 structures with PBE+TS (l) 

Geometry optimization\

of top 200 structures with PBE+TS (l) 

Lattice relaxation

of top 100 structures with PBE+TS (l) 

Energy ranking 
 

of 100 structures with PBE+MBD (t) 

+ Vibrational free energy

for ~20 structures at 300 K in the HA using PBE+TS (l)

Figure 8.2: Illustration of our complete re-ranking procedure (applied for systems
XXII and XXIII).

By now, it is also well-known that vibrational free energies can have a significant

influence on the relative stabilities of molecular crystal structures [42]. Therefore, we

calculated for about 20 structures for systems XXII and XXIII also vibrational free

energies within the harmonic approximation at 300 K. These phonon calculations were

carried out with the finite difference method using FHI-aims and phonopy [123]. All

force calculations were performed at the PBE+TS level of theory using light species

default settings. Finite displacements of 0.005Å were used throughout and the phonon

calculations were always performed on (super)cells extending at least 10 Å in every di-

rection in order to minimize artifacts. The second list includes now stability rankings

based on Helmholtz free energies, which are the sum of the static PBE+MBD energy and

the vibrational free energy. Due to time reasons, an abbreviated version of this proce-

dure was used for systems XXIV and XXV. For system XXIV, 100 lattice optimizations

were performed directly after the initial ranking of the 1000 starting structures and force

components were converged to 10−2 eV/Å. Subsequently, PBE+MBD/tight energy cal-

culations were carried out for the top 50 structures. For system XXV, lattice relaxations

were performed for the top 20 structures after the initial stability ranking utilizing the
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8 Sixth Blind Test of Organic Crystal Structure Prediction Methods

same settings as for system XXIV. Subsequently, PBE+MBD/tight energies were calcu-

lated for these 20 relaxed structures. Due to time limitations, system XXVI could not be

calculated before the blind test submission deadline. However, the stability ranking for

XXVI was calculated in a post analysis utilizing the same approach as for system XXIV.

8.3 Initial Structure Screening

Since full lattice relaxations are not feasible for 1000 structures on a DFT level, we

performed a hierarchical screening in order to limit the number of structures. This

initial screening is performed at the PBE+TS (light) level. We discuss here the impact

of the geometry and lattice optimization on the relative stabilities of system XXIII. Fig.

8.3 illustrates these three steps in terms of the final 31 structures, which are highlighted

in all rankings and grouped in intervals of 5 or 6 structures.

The initial ranking based on the force-field structures has a spread of 34 kJ/mol

but all highlighted structures are already found within the top 12 kJ/mol. For these

structures, a geometry optimization changes relative stabilities on average by 2.0 kJ/mol
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Figure 8.3: Impact of the applied geometry and lattice optimizations on PBE+TS
energies used for the initial screening of structures.
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with a maximum of 4.7 kJ/mol and a standard deviation of 1.3 kJ/mol. At this stage,

the spread of all calculated structures reduces to about 17 kJ/mol. The subsequent

lattice optimization further modifies relative energies on average by 1.7 kJ/mol with a

maximum of 4.0 kJ/mol and a standard deviation of 1.0 kJ/mol. Therefore, performing

full lattice relaxations for the top 8 kJ/mol is statistically sufficient to not miss the most

stable structure according to the PBE+TS description. After the lattice optimizations

our energy range amounts to 11.5 kJ/mol. While this hierarchical screening is sufficient

to not miss important structures according to the PBE+TS description, our final energy

ranking is performed using PBE+MBD. The difference between PBE+MBD/tight and

PBE+TS/light relative stabilities amounts in this case on average to 3.2 kJ/mol with a

standard deviation of 2.2 kJ/mol and an observed maximum of 7.5 kJ/mol. Therefore,

it would be advisable to perform more PBE+TS lattice relaxations to ensure that the

most stable structure according to PBE+MBD is indeed included in the final structure

set.

8.4 Overall Results of the Blind Test

Our final stability rankings are visualized in Fig. 8.4. Experimentally confirmed struc-

tures are highlighted in red. Note that system XXVI was not part of our original blind

test contribution but was added in a post analysis. Our blind test results are summa-

rized in Table 8.1 along with two other selected submissions. For the full blind test

results the reader is referred to Ref. 51.

We will discuss our overall blind test results in context of the submission by Price et

al. since our submission attempted to provide a first-principle re-ranking of the provided

force-field structures. In both submissions, 5 out of the 7 attempted predictions were

successful. This illustrates that our applied hierarchical procedure was successful and

did not loose any important structure in an intermediate step. Note that form C and E of

system XXIII could not have been obtained by the used crystallographic space sampling

since only Z ′ = 1 structures were considered. However, form A of system XXIII and

the structure of the salt (XXIV) were not successfully predicted. Now let us discuss

the obtained stability ranks. Rank 1 in the table indicates that the experimentally

Table 8.1: Blind test results of selected groups [51]. The numbers indicate the rank of
the experimentally obtained structure within the submitted lists.

XXII XXIII XXIV XXV XXVI

A B C D E

Submission L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2

This work 3 1 - - 2 5 14 2 - 1 (1)
Price et al. [51] 6 2 - - 1 2 85 44 - - 1 1 2 1

Neumann et al. [51] 2 26 85 2 4 - 6 11 39 - - 2 6 1 1
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vibrational free energies at room temperature. Note that the results of system XXVI
were obtained after the blind test submission deadline.

obtained structure was indeed predicted as the most stable structure. It can be seen

that our ranking — as well as the Price et al. ranking — provides a perfect rank (1)

for systems XXV and XXVI. For system XXII our free energy ranking (list 2) yields

rank 1 for the experimental structure, which is a slight improvement over the results

obtained by Price et al. (rank 2). For system XXIII we observe a larger difference

between the two approaches. In our free energy ranking form B and D are observed

within the top 5 structures while the force-field approach used by Price et al. yields

rank 2 and 44, respectively. This suggests that first-principle approaches can be crucial

for flexible systems with a lot of polymorphs in a narrow energy window. Furthermore,

it can be seen that our free energy rankings provide significantly better results than our

static energies. This highlights again how important thermal effects are for stability

rankings at finite temperatures. The accuracy of our PBE+TS-optimized structures in

comparison to the experimentally determined unit cells will be discussed in the next

chapter.

Finally, we briefly mention one other blind test submission — Neumann et al. While

this approach does not yield perfect stability rankings, it was able to predict all but one

structures of the blind test. This includes form A of system XXIII and in addition also

form C, which is a Z ′ = 2 structure. Furthermore, this was the only submission within

the blind test, which correctly predicted the salt structure (XXIV). Further details will

be discussed in the following chapter.
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8.5 Discussion

Figure 8.5: Relative stability rankings for system XXIII. Experimentally observed
structures are shown in color. Reproduced from Ref. 51 (CC-BY).

8.5 Discussion

Now we provide a short discussion of the individual systems including a post-analysis.

For system XXII our first list ranks the experimental structure as rank 3, which is

located 2.2 kJ/mol away from the most stable structure. By including vibrational free

energies, we are able to correctly rank the experimental structure as rank 1.

For system XXIII we were able to predict forms B and D with ranks 2 and 14

in list 1. After inclusion of thermal effects (list 2) both forms are located within the

top 5 structures. Experimental evidence suggests that form D should be the most

stable polymorph at room temperature. In our ranking we indeed observe that form

D becomes more stable than form B after thermal effects are accounted for. Since we

were not able to predict all forms, we performed a post analysis and calculated the

relative stabilities for the missed structures using the experimental crystal structures

as starting points for the lattice relaxations. The results are added to our obtained

stability rankings and shown in Fig. 8.5. According to the PBE+MBD ranking (list 1)

form C is the most stable structure and we find all experimentally observed structures

within an energy window of about 5 kJ/mol. Adding vibrational free energies (list 2)

significantly changes the relative stability ordering and form E becomes the most stable
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8 Sixth Blind Test of Organic Crystal Structure Prediction Methods

form. Furthermore, we observe that the inclusion of vibrational free energies increases

the spread of the relative stabilities from about 6 to 14 kJ/mol. In contrast, the energy

window of the experimentally observed structures is narrowing, and we find now all five

forms in an energy window of only 2.9 kJ/mol.

For system XXIV, the experimentally observed structure was not present in our

initial structure set and could not be predicted. Our post analysis revealed that the

experimentally obtained structure is by 6.4 kJ/mol more stable than our predicted rank

1 structure.

For systems XXV and XXVI, our static stability ranking based on PBE+MBD is

able to predict the experimentally obtained structure as rank 1. In both cases the fol-

lowing structures are reasonably separated and therefore vibrational free energies will

presumably not significantly impact the rank of the experimental structures. In the case

of XXV the second most stable structure is already separated by about 3 kJ/mol. In

the case of XXVI we observe only two additional structures within the top 4 kJ/mol,

located at 0.7 and 1.5 kJ/mol.

8.6 Summary

In this chapter, we have presented the blind-test results of our hierarchical stability

re-ranking procedure. We have shown that this procedure retained all important struc-

tures from the initial structure set and we have obtained excellent stability rankings for

the experimentally confirmed structures accessible through the available set of initial

structures. The results suggest that first-principles approaches are especially relevant

for stability rankings of complicated systems involving flexible molecules with numer-

ous low-energy structures. Furthermore, we found that the inclusion of vibrational free

energies can lead to a significant stability re-ordering and hence to improved stability

ranks.
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Chapter 9

Recommended Stability-Ranking

Procedure Based on DFT+MBD

After our quite successful blind-test contribution, we wanted to further evaluate and

improve our hierarchical CSP re-ranking procedure. Therefore, we discuss and system-

atically analyze the results obtained by combining our re-ranking approach with the

crystallographic space sampling provided by Neumann et al. for the blind test sys-

tems [51]. In this regard, we are especially interested how our approach deals with salts

and less symmetric Z ′ = 2 structures.

The CSP approach by Neumann et al. was able to correctly predict all but one exper-

imentally observed structures within the top 100 most stable structures, building on top

of their successes in previous blind tests [49, 50, 182]. In this approach, initial structures

are generated via a Monte Carlo parallel tempering algorithm utilizing a tailor-made

force field [183] within the Grace software package. After this initial screening, a set

of candidate structures is then re-optimized in a hierarchical and statistically-controlled

process using vdW-inclusive DFT [51, 182, 184]. Beyond the robust sampling of the

essential regions of crystallographic space, these initial energy rankings can be sub-

stantially improved upon by utilizing state-of-the-art first-principles methodologies as

described below.

Herein, we present and discuss a modified version of our hierarchical stability rank-

ing approach, which includes now also hybrid DFA calculations. Furthermore, we also

consider thermal expansion via the QHA and estimate anharmonic free energies by using

Morse oscillators for selected structures. A version of this chapter has been published in

Science Advances [185] (CC BY-NC). A part of the lattice optimizations was performed

by Hsin-Yu Ko from Princeton University.

9.1 Computational Methods

For each system in the latest blind test, we utilized the top 100 crystal structures from

the submission of Neumann et al. (which are available in the Supplementary Information

of Ref. 51) as initial structures for this study. The five blind test systems are illustrated
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9 Recommended Stability-Ranking Procedure Based on DFT+MBD

in Fig. 8.1. For systems with two submitted lists, we used the list which also included

Z ′ = 2 structures, i.e., structures which have two molecules in the asymmetric unit.

Form E of system XXIII was the only experimental structure not present in this set

and was therefore added for completeness. All calculations were performed using the

all-electron code FHI-aims [74, 120–122, 160–162]. Throughout this chapter, we utilize

two different accuracy levels in FHI-aims, which are denoted as light and tight. For the

light level, we use the light species default setting available in FHI-aims for all numerical

atom-centered basis functions and integration grids. The number of k-points (n) in each

direction was determined by the smallest integer satisfying n×a ≥ 25 Å, with a being the

unit cell length in a given direction. For the tight level, we use the tight species default

settings in FHI-aims and the number of k-points is determined by the criterion that

n × a ≥ 30 Å. Many-body dispersion interactions were evaluated at the MBD@rsSCS

level with a reciprocal-space implementation that utilized the same k-point mesh as

the DFT calculations [35, 64]. Convergence criteria of 10−6 eV, 10−5 electrons/Å3,

10−4 eV/Å, and 10−3 eV were used for the total energy, charge density, forces, and sum

of eigenvalues, respectively.

First, we performed full lattice and geometry relaxations (without any symmetry

constraints) using the PBE functional [82] in conjunction with the effective-pairwise

TS dispersion correction [34], ensuring that the smallest force component is less than

0.005 eV/Å. Duplicate structures were identified using Mercury [186]. Structures were

considered similar if 20 out of 20 molecules within the crystals matched within 25% in

terms of distances and within 25◦ in terms of angles, which are the same criteria used

in Ref. 51 to identify matches. Two similar structures were considered to be identical

if their PBE+TS energy (light) agreed to within 1 kJ/mol and their root-mean-square

deviation of 20 molecules (RMSD20) is smaller than 0.5 Å. This ensures that we are are

removing real duplicate structures but still consider similar structures with sufficiently

different stabilities due to for example slightly different torsion angles. Only the most

stable structure among identical structures was retained throughout this protocol. These

optimized structures were symmetrized using PLATON [187] and are provided in the

Supporting Information of Ref. 185. All structures were named according to their rank in

the initial ranking by Neumann et al. In order to determine if an experimental structure

was found, we used the same settings for the crystal similarity search as described above.

Next, relative energetic stabilities were computed based on these PBE+TS optimized

structures by using PBE+TS and PBE+MBD [35, 64] with tight settings. In order

to ensure the convergence of the relative energies, we have created a benchmark set

consisting of 8 small structures of system XXII and 4 small structures of system XXIV.

For these structures, PBE+MBD energies were computed using really tight settings for

the integration grids and tier 3 basis functions (see Table A.1 in Appendix A). When

considering all possible relative energies between structures from the same system, the

mean absolute deviation (MAD) for the tight settings amounts to only 0.1 kJ/mol with

a maximal deviation of 0.3 kJ/mol (see Table 9.1). This illustrates the fact that tight

settings provide already converged relative stabilities.

Since PBE0 [84] calculations with tight settings are not possible for all of the studied
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9.1 Computational Methods

Table 9.1: Convergence of relative stabilities with basis set and grid settings. This
table shows the mean absolute deviation (MAD) and the maximum absolute devia-
tion (MAX) for all possible relative energies (within a system) from Table A.1 w.r.t.
PBE+MBD calculations with really tight settings for basis set and grids [185].

Method MAD [kJ/mol] MAX [kJ/mol]

PBE+MBD/light 0.9 3.2
PBE+MBD/tight 0.1 0.3

Table 9.2: This table shows the mean absolute deviation (MAD) and the maximum
absolute deviation (MAX) for all possible relative energies (within a system) from Table
A.1 w.r.t. PBE0+MBD calculations with tight settings for basis set and grids. The
method PBE0+MBD without a label for basis set and grid settings corresponds to the
described PBE0+MBD estimate [185].

Method MAD [kJ/mol] MAX [kJ/mol]

PBE+MBD/light 1.6 4.8
PBE+MBD/tight 0.8 1.8
PBE0+MBD/light 0.8 2.6
PBE0+MBD 0.4 0.8

systems due to the massive computational cost and memory requirements, we approx-

imate the PBE0+MBD energies by adding the difference between PBE0+MBD and

PBE+MBD evaluated at the light level to the PBE+MBD energies calculated at the

tight level. For the previously mentioned benchmark set, this approximation has a

MAD of only 0.4 kJ/mol with a maximum deviation of 0.8 kJ/mol, when compared

to PBE0+MBD energies evaluated with tight settings (see Table 9.2). In contrast,

PBE0+MBD energies at the light level yield a MAD of 0.8 kJ/mol with a maximum

deviation of 2.6 kJ/mol. Therefore, our approximation provides relative energies that

are in very good agreement with tight PBE0+MBD energies. PBE0+MBD energies

were computed for all structures of systems XXII, XXIII, and XXIV. For the remain-

ing systems, PBE0+MBD calculations are available for (at least) the structures located

within the top 4.5 kJ/mol of the PBE+MBD rankings.

Vibrational free energies (Fvib) were computed at the PBE+TS level with light set-

tings by utilizing phonopy [123] and the finite-difference method within the harmonic

approximation. The vibrational free energy Fvib was calculated according to Eq. 4.5.

The final stability rankings are always based on PBE0+MBD+Fvib energies evaluated at

temperatures correspond to the experimental crystal structure measurements. An illus-

tration of the applied hierarchical procedure is shown in Fig. 9.1. For the finite-difference

calculations, we used displacements of 0.005 Å and (whenever necessary) supercells that

ensure cell lengths greater than 10 Å in every direction. Furthermore, the vibrational

free energy was evaluated in reciprocal space, where the number of q-points (n) in each

direction is determined by the smallest integer satisfying n×a ≥ 50 Å. All structures had
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Initial structures

PBE+Neumann-Perrin

M. Neumann et al. [1]

Full lattice relaxations

PBE+TS (l)
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\

PBE0+MBD

PBE+MBD (t) + PBE0+MBD (l) - PBE+MBD (l)

+ Vibrational free energies

PBE+TS (l)

Harmonic approximation

Figure 9.1: Illustration of the applied hierarchical CSP procedure.

no imaginary frequencies at the Γ-point and the magnitude of the three acoustic modes

was smaller than 0.1 cm−1 in most cases and always smaller than 0.5 cm−1. Vibrational

free energies were calculated for (at least) all structures that are located within the top

3 kJ/mol according to the PBE0+MBD ranking. For system XXIII, vibrational free en-

ergies were calculated for all Z ′ = 1 structures and for all Z ′ = 2 structures containing

up to 8 molecules per unit cell within the top 4.8 kJ/mol of the PBE0+MBD ranking.

For the QHA, we performed PBE+TS lattice and geometry optimizations of several

structures from system XXIII using light settings with external hydrostatic pressures of

0.4, 0.2, -0.2, -0.4, and -0.6 GPa in order to obtain optimized structures with different

unit cell volumes. A negative hydrostatic pressure constitutes a so-called thermal pres-

sure [39]. Temperature effects in molecular crystals can significantly affect the unit cell

volume. These thermal effects can approximately be accounted for by lattice optimiza-

tions under an appropriate thermal pressure, which leads to the volumetric expansion

of the cell (see Refs. 13, 39). A minimization of the Gibbs free energy at a certain

temperature w.r.t. the cell volume enables the calculation of the corresponding thermal

pressure, which is defined as the derivative of the vibrational free energy w.r.t the vol-

ume. Then, harmonic vibrational free energies were computed for all of the obtained

structures. Based on the light PBE+TS energies and harmonic vibrational free energies,

the unit cell volume corresponding to 300 K was determined via the Murnaghan equa-

tion of state [144]. Based on these thermally-expanded structures, the stability rankings

were calculated as described above.
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For all thermally-expanded structures of system XXIII, we computed the anharmonic

vibrational contributions to the free energies by replacing the harmonic oscillators by

Morse oscillators. This is done for all phonon modes at the Γ-point of cells containing

4 molecules, i.e., for Forms A, C, D, E, and Str. N70, this corresponds to the unit cell,

while for Form B and Str. N18, N31, and N42, this corresponds to a 2× 1× 1 supercell.

The structures were displaced along all normal modes in both directions, corresponding

to energy changes of 0.5 kBT and kBT according to the harmonic approximation, where

kB is the Boltzmann constant and T = 300 K. The energies of all displaced structures

were calculated with PBE+TS using light settings. To have a consistent sampling of

the thermally-accessible energy window, we demanded that the largest observed energy

change with respect to the optimized thermally-expanded structure always lies between

kBT and 1.5 kBT . Therefore, the displacement amplitudes of a few low-frequency modes

had to be reduced in order to sample the desired energy window. Next, we fitted a Morse

potential [104, 105], given by

V (x) = D
(
1− e−a(x−x0)

)2
, (9.1)

to the obtained data points for each mode. In this expression, x is the displacement

amplitude, and the parameters D, a, and x0 describe the well depth, the width of the

potential, and the minimum of the potential, respectively. The energy of a vibrational

mode in state v can be calculates by

E(v) = ~ω0

(
v +

1

2

)
− ~

2ω2
0

4D

(
v +

1

2

)2

, (9.2)

with

ω0 =

√
2a2D

µ
, (9.3)

where µ is the reduced mass. The anharmonic vibrational free energy (F̃vib) at the

Γ-point was computed according to

F̃vib,Γ = −kBT lnQvib, (9.4)

with

Qvib =
∏

i

∑

ν

exp

(−Ei,ν

kBT

)
, (9.5)

where i runs over phonon modes. This approach yields anharmonic vibrational free

energies at the Γ-point for cells including 4 molecules. In order to account also for other

q-points, we rely on the harmonic approximation and calculate the total vibrational free

energies according to:

F̃vib = Fvib,full + F̃vib,Γ − Fvib,Γ, (9.6)

where Fvib,full is the fully converged harmonic vibrational free energy and Fvib,Γ is the

harmonic vibrational free energy evaluated at the Γ point for the cells described above.
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9.2 Energy Ranking Approach

As the foundation for the presented stability ranking approach, we utilize the top 100

molecular crystal structures (for every system of the latest blind test) from the above

mentioned sampling approach of Neumann et al. using Grace (see Supplementary In-

formation of Ref. 51). Form E of system XXIII is the only experimental structure that

was not present in this set of initial structures and is included for completeness. We

note in passing that this form was in fact generated by Neumann et al., but was located

just outside the energetic window considered for the Z ′ = 2 structures. In total, this set

includes 501 structures (with unit cell sizes ranging from 15 to 992 atoms) and therefore

provides a large-scale benchmark structural database under realistic CSP conditions.

Based on these initial molecular crystal structures, we have developed a robust hier-

archical first-principles approach for energetically ranking all relevant polymorphs. This

approach is directly applicable to pharmaceutically relevant systems and includes three

important theoretical aspects that are commonly neglected in typical CSP protocols:

(i) a sophisticated treatment of Pauli exchange-repulsion and electron correlation effects

with hybrid functionals, (ii) inclusion of many-body dispersion interactions and dielec-

tric screening effects, and (iii) an account of vibrational contributions to the free energy.

In this regard, the hybrid PBE0 functional [84] in conjunction with the many-body dis-

persion (MBD) model [35, 64, 89, 188, 189] is able to predict absolute experimental

lattice energies to within 1 kcal/mol [39, 40] and relative stabilities of several polymor-

phic systems to within 1 kJ/mol [40, 60, 88, 117]. Hence, the PBE0+MBD approach is

used for all calculations of static lattice energies. Geometry and lattice optimizations,

as well as vibrational free energies are computed with the PBE functional [82] in con-

junction with the effective-pairwise TS dispersion model [34] (denoted as PBE+TS).

9.3 Polymorphic Energy Landscapes

The stability rankings obtained for the five blind-test systems are shown in Figs. 9.2

and 9.3. (all relative energies are available in Appendix C). Our proposed energy rank-

ing, which includes all of the aforementioned theoretical contributions, is shown for

every system in the last column and marked with PBE0+MBD+Fvib. To illustrate the

importance of each contribution to the stability ranking, Fig. 9.2 not only shows the

final stability rankings, but also several intermediary steps, in which one or more of

the three aforementioned theoretical contributions are not accounted for in the rank-

ings. The first ranking considers only static lattice energies computed at the PBE+TS

level, while the second ranking accounts for beyond-pairwise many-body dispersion in-

teractions (PBE+MBD). In the third ranking, we include a more sophisticated treat-

ment of Pauli exchange-repulsion via PBE0+MBD. In doing so, the deleterious effects

of self-interaction error (a DFT artifact in which an electron interacts with itself) are

significantly ameliorated, which leads to a substantial improvement in the description

of electrostatic and charge-transfer effects. In the final ranking, we supplement the

PBE0+MBD energies with harmonic vibrational free energy contributions (+Fvib) at
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Figure 9.2: Relative stabilities for all steps in the present CSP stability ranking
procedure for systems XXII, XXIV, XXV, and XXVI. For each ranking, the energy of
the most stable crystal structure defines the zero-of-the-energy. Experimentally observed
structures are highlighted in color while all other structures are in gray. The final ranking
for each system corresponds to the Helmholtz free energies at the PBE0+MBD+Fvib

level, computed at 150 K (XXII), 240 K (XXIV), or 300 K (XXV, XXVI). The energies
are normalized per molecule for XXII and XXVI and given per formula unit for XXIV
and XXV. Adapted from Ref. 185 (CC BY-NC).

the PBE+TS level. This leads to our proposed PBE0+MBD+Fvib final stability rank-

ing based on Helmholtz free energies, which accounts for thermal entropic effects.

We first concentrate our discussion on systems XXII, XXIV, XXV, and XXVI. For

all of these systems, our final stability ranking at the PBE0+MBD+Fvib level pre-

dicts the experimental structure as the most stable form—the ideal outcome of any

CSP protocol. As seen from the intermediate stability rankings, all of the three pre-

viously mentioned theoretical effects are required to obtain this result. For example,
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Figure 9.3: Relative stabilities for all steps in the present CSP stability ranking proce-
dure for system XXIII. For each ranking, the energy of the most stable crystal structure
defines the zero-of-the-energy. Experimentally observed structures are highlighted in
color while all other structures are in gray. The final ranking for each system corre-
sponds to the Helmholtz free energies at the PBE0+MBD+Fvib level, computed at the
300 K. The energies are normalized per molecule. The right part of the figure shows the
unit cells for all highlighted structures. Adapted from Ref. 185 (CC BY-NC).

Pauli exchange-repulsion (through the PBE0 functional) plays a crucial role for system

XXII [190], while many-body dispersion effects are the most important factor for system

XXVI. In addition, all structures with free energies that are within 1 kJ/mol of the exper-

imental structure are essentially minor variations of the latter (see Section 9.5), which

demonstrates the robustness of our CSP approach in dealing with pharmaceutically-

relevant systems like salts, co-crystals, and molecular crystals involving large and flexible

molecules.

Now we focus our discussion on the most challenging system in the blind test (XXIII).

This system involves a conformationally flexible molecule and has five experimentally

confirmed polymorphs [51]. The fact that this compound is also a former drug can-

didate [191] makes it an ideal testing ground for CSP of pharmaceutically-relevant

molecules. Due to the flexibility of the involved molecule, various conformations are

possible within the crystal, leading to a fairly complex polymorphic landscape with

numerous crystal structures located within a very small energy window. As shown in
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9.4 Stability Ranking Results

Fig. 9.3, the PBE+TS method is again insufficient for quantitative energy rankings and

places all experimentally observed structures within the top 11 kJ/mol—an energy win-

dow containing 84 structures. Each refinement of the energetic rankings changes their

relative stabilities, with all experimental structures observed within the top 4.3 kJ/mol

(≈ 1 kcal/mol) in the final ranking with PBE0+MBD+Fvib. At this level, all experi-

mental structures were found within an energy interval of 3 kJ/mol, which is within the

expected energy range associated with co-existing polymorphs [41]. We note here that

our procedure finds one structure (Str. N70) that is ≈ 1.5 kJ/mol more stable than all

experimentally observed structures, a remarkable finding that is discussed in more detail

below.

The computational cost of the procedure presented herein depends heavily on the

system size (and other system attributes) and is discussed below based on CPU tim-

ings obtained on 2.4 GHz Intel Xeon E5-2680 v4 cores. For the static lattice energies

obtained with PBE0+MBD, a single-point energy evaluation (employing the settings

described in the Computational Methods section) needs 3.5 CPU hours for the smallest

unit cell (XXII-N44, 15 atoms) and approximately 750 CPU hours for the largest unit

cell (XXV-N39, 896 atoms). For an average-sized system with 172 atoms in the unit

cell (e.g., form A of XXIII), a single PBE0+MBD energy evaluation is very reasonable

and requires only 60 CPU hours. The computational cost associated with PBE+TS

lattice and geometry optimizations depends on the number of optimization steps, but

typically amounts to about 2-3 × that of the corresponding PBE0+MBD single-point

energy evaluation. The cost of the harmonic PBE+TS vibrational free energies depends

on the size, shape, and symmetry of the unit cell, as these properties determine the

required supercell size and the number of finite-difference displacements. For example,

the time required for the PBE+TS vibrational free energy calculations ranges from 180

CPU hours (XXII-N2) to 45,000 CPU hours (XXIII-N3). In the case of structure XXII-

N2, only 90 finite-difference displacements were required and the employed supercell

consisted of 120 atoms, while the calculation involving structure XXIII-N3 required 516

finite displacements and a supercell containing nearly 1,400 atoms. The vibrational free

energy calculation for the average-sized form A of system XXIII requires 258 finite dis-

placements and a supercell equivalent to the unit cell, which results in a computation

time of 750 CPU hours. Overall, we note that these computational resources are within

reach of academic institutions and industrial laboratories.

9.4 Stability Ranking Results

For all systems with only one known polymorph, the systematic and hierarchical energy

ranking protocol presented herein (PBE0+MBD+Fvib) correctly produced the exper-

imental structure as the most stable forms (Rank 1). This represents a significant

improvement over the Ranks 2 (XXII), 2 (XXIV), 6 (XXV), and 1 (XXVI) obtained by

the unrefined results of Neumann et al., which again stresses the critical importance of an

energy ranking protocol based on state-of-the-art first-principles based methodologies.

99



9 Recommended Stability-Ranking Procedure Based on DFT+MBD

Figure 9.4: Overlay between the experimentally determined structures (element-
specific colors) and the corresponding PBE+TS optimized structures for systems (green):
(a) XXII, (b) XXIII-A, (c) XXIII-B, (d) XXIII-C, (e) XXIII-D, (f) XXIII-E, (g)
XXIV, (h) XXV, and (i) XXVI. These overlays are shown for the molecules constitut-
ing the respective unit cell. Reproduced from Ref. 185 (CC BY-NC).

For system XXIII, all experimental structures were found within the top 18 structures,

with the two Z ′ = 2 structures assigned Rank 3 (Form E) and 4 (Form C). When

only considering the Z ′ = 1 structures, we find all three experimental structures among

the top 10 structures, as compared to the top 26 in the initial ranking by Neumann et

al. Moreover, all of our predicted structures agree to within 0.5 Å of the experimental

structures as quantified by the root-mean-square deviation (RMSD) measure of a cluster

consisting of 20 molecules. These so-called RMSD20 values also agree to within 0.05 Å

with the RMSD20 values of the initial structures obtained by Neumann et al. Overlays

of the predicted and experimental structures are provided in Fig. 9.4 and additional

information about the accuracy of the structures is provided in Appendix B.

9.5 Discussion of Most-Stable Unobserved Structures

In this section, we briefly discuss several structures, which have not been observed in ex-

periment but are very close in terms of stability to experimentally confirmed structures.

Let us first discuss the four systems with only one known experimental structure (XXII,

XXIV, XXV, XXVI). We always discuss the relative stabilities in terms of our recom-

mended PBE0+MBD+Fvib ranking. For system XXII we find one structure (XXII-N3),

which is only 0.5 kJ/mol less stable than the experimental structures. However, this

structure is very similar to the experimental one. In our similarity search we find that
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15 out of 20 molecules match with the experimental structure. For system XXIV the first

three non-observed polymorphs (XXIV-N3, XXIV-N10, XXIV-N53) are found within 1.3

kJ/mol of the experimental structure. All of them are a partial match w.r.t. the ex-

perimental structure, i.e., at least 10 molecules out of 20 match with the experimental

structure. In system XXV there are no structures within 3.8 kJ/mol. For system XXVI

we find two structures which are within 0.3 kJ/mol of the experimental structure. Also

in this case, both of them are very similar to the experimental structure. Structure

XXVI-N5 is a partial match (16/20 molecules) and structure XXVI-N4 is in fact a com-

plete match but has a large RMSD of 0.9 Å. Therefore, all structures which are within

1.3 kJ/mol of these experimental structures have several structural features in common

with the experimental structure.

Finally, let us discuss the former drug candidate XXIII. For this system we find

two structures which are described as more stable than any experimental structure

(XXIII-N70 and XXIII-N5). Structure XXIII-N70 is a partial match for form A (13/20

molecules) and will be discussed in more detail below. Structure XXIII-N5 is a structure

with two molecules in the asymmetric unit (Z ′ = 2) and is virtually identical with form

C. However, given the used settings for identical structures, it could not be excluded

from the list since only 17 out of 20 molecules are considered a match. In addition, we

find several Z ′ = 1 and Z ′ = 2 structures which are structurally sufficiently different

and thermodynamically stable enough to potentially crystallize in experiment.

Our most stable structure (XXIII-N70) and form A (XXIII-N85) are structurally

very similar, but only form A is observed experimentally despite the fact that structure

N70 is predicted to be 4.1 kJ/mol more stable. Even our anharmonic free energy es-

timate will not significantly change the relative stability. This energy difference is too

large to be simply attributed to a computational error. If form A crystallizes instead of

structure N70, form A must be dynamically favored. The vibrational free energy stabi-

lizes structure N70 by 2.8 kJ/mol compared to form A. Even at the PBE0+MBD level,

structure N70 is still more stable than form A, but only by 1.3 kJ/mol. The vibrational

free energy difference is calculated assuming crystals of infinite size. Free energy may

not yet stabilize structure N70 over form A during the nucleation phase, when crystal-

lites are small. However, since even without the vibrational free energy contribution

structure N70 is more stable than form A, this observation cannot explain why struc-

ture N70 does not crystallize at all. Since the only notable difference between the two

structure is the stacking of the sheets (see Fig. 9.5, it may be concluded that under the

explored crystallization conditions crystal growth perpendicular to the sheets is signif-

icantly faster for the form A stacking than for the N70 stacking, potentially related to

2D nucleation on the surface. Extremely slow crystal growth may be the key to obtain-

ing structure N70 rather than form A. Since structure N70 and form A share the same

molecular conformation, the same hydrogen bonding and much of their surface chem-

istry, solvents favoring form A over forms B, C, D and E should also favor structure N70

over the other forms. Extremely long slurrying or extremely low melting starting from

form A may be alternative ways to obtain structure N70. The main challenge will be

to avoid conversion to forms B, C, D or E before conversion to structure N70 is achieved.
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Figure 9.5: Structural differences between structure N70 (a) and form A (b) of system
XXIII. Both structures share a sheet structure (red boxes) in which the molecules are
arranged according to the same pattern, but the sheets are stacked differently.

9.6 Beyond the Harmonic Approximation

While our presented approach yields very good stability rankings, vibrational free en-

ergies were only calculated within the harmonic approximation on top of fully relaxed

structures. Therefore, the geometry and lattice optimizations did not include tem-

perature (thermal expansion) effects and the calculated vibrational free energies lack

anharmonic effects. The missing thermal expansion can be seen in our obtained unit

cell volumes. Comparing the obtained PBE+TS unit cell volumes with the experimental

volumes measured at 300 K (all experimental structures except XXII and XXIV) shows

that we underestimate these unit cell volumes by 3.6% on average. With five known

polymorphs, system XXIII is the most experimentally studied system and it exhibits

the most complicated polymorphic energy landscape among the systems investigated in

this work. As such, we specifically address how thermal expansion and anharmonicity

affect a small set of XXIII structures, from which we estimate their effect on relative

stabilities in general. This set includes all experimentally observed structures of system

XXIII (forms A, B, C, D, E) as well as the first four Z ′ = 1 structures (Str. N70, N31,

N18, N42), which have yet to be experimentally observed.

The effects of thermal expansion can be calculated in the so-called quasi-harmonic

approximation (QHA) [143], in which vibrational free energies are calculated within the

harmonic approximation for several unit-cell volumes. The unit-cell volume correspond-

ing to a certain temperature is then determined by the minimum of the Helmholtz free

energy at that temperature, which is evaluated by fitting the energy-volume curves to the

Murnaghan [144] equation-of-state. It has been shown for several molecular crystals that

the QHA is capable of capturing a majority of the thermal expansion [13, 147, 148, 192].

Here, we calculated the unit-cell volumes corresponding to a temperature of 300 K us-

ing PBE+TS. With this approach, we are now able to predict room-temperature unit

cell volumes to within 1.0% on average. As such, the QHA provides a simple but
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effective way of including thermal effects in molecular crystal structures using first-

principles based methodologies. A detailed comparison of these thermally expanded

structures with experiment is available in Appendix B. Stability rankings calculated with

PBE0+MBD+Fvib on top of these thermally-expanded structures are shown in Fig. 9.6.

We note in passing that these relative Helmholtz free energies can also be interpreted

as relative Gibbs free energies since the additional pV term has only a negligible effect

at ambient pressure. The largest observed change in relative stabilities stemming from

the use of thermally-expanded structures (as compared to fully optimized 0 K struc-

tures) amounts to 1.4 kJ/mol at the PBE0+MBD+Fvib level, but is only 0.4 kJ/mol on

average. Therefore, we observe some re-ordering of stability rankings, but the general

picture and the energy interval remain essentially the same.

In addition to thermal expansion, the vibrational contributions to the free energy also

contain anharmonic effects. Here, we estimate these anharmonic effects by replacing the

harmonic oscillators obtained via the harmonic approximation by Morse oscillators [104,

105]. The Morse oscillator models a particle in an anharmonic potential, for which

dissociation is possible. It is the next logical step after the harmonic oscillator since

it is also one of the few quantum-mechanical model systems, for which an analytic

solution of the Schrödinger equation is known [66]. The Morse oscillator provides a

more realistic picture than the harmonic oscillator since it has a finite number of non-

equispaced energy levels. This model has been used to describe the spectra of diatomic

molecules by improving upon harmonic vibrational frequencies for the hydroxyl groups

in methanol, phenol, thymol, and the water dimer [66, 193, 194]. Here, we create four

displaced structures per vibrational mode and use the corresponding PBE+TS energies

to fit the parameters of the Morse potential and hence determine the Morse vibrational

free energies. In this work, the Morse oscillators are independent of each other, i.e., we

do not account for coupling between vibrational modes. The corresponding free energy

stability rankings with such an anharmonic treatment of the vibrational free energy

are denoted by PBE0+MBD+F̃vib and shown in Fig. 9.6. At this level, all experimental

structures are found within an energy window of only 1.5 kJ/mol, which is well within the

expected energy range for co-existing polymorphs. We note in passing that Brandenburg

and Grimme have also studied the experimental structures of system XXIII utilizing a

semi-empirical tight-binding approach within the QHA; however, their values lie within

a much larger energy window of ≈ 8 kJ/mol [58].

Quite interestingly, the unobserved polymorph of XXIII (Str. N70) is significantly

more stable than any of the experimentally determined crystal structures, even after

accounting for thermal expansion in the underlying crystal structures as well as anhar-

monic vibrational free energy contributions. In this regard, this polymorph is actually

further stabilized by vibrational entropy and shares many structural features with form

A. The most notable difference is the stacking pattern of the molecular sheets as dis-

cussed above. As such, we hypothesize that Form A might be kinetically favored over

Str. N70 and this hitherto unobserved polymorph could potentially be crystallized by

slowly melting Form A or introducing surfactants during the crystallization procedure.

In addition, from a thermodynamic standpoint, Str. N18, N31, and N42 might also be

observed experimentally, although Str. N42 involves a twisted molecular conformation
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Figure 9.6: Stability rankings for thermally-expanded structures. Energetic rank-
ings for all experimentally observed (Form A, B, C, D, E) and theoretically-predicted
(N18, N31, N42, N70) structures for system XXIII. All energies were evaluated using
thermally-expanded PBE+TS structures optimized at 300 K with the QHA. The last two

rankings include harmonic (Fvib) and Morse anharmonic (F̃vib) vibrational free energy
contributions. Reproduced from Ref. 185 (CC BY-NC).

which might not be easily accessible in solution. Experimental evidence [51] suggests that

Form A should be the most stable structure at low temperatures and Form D the most

stable structure at room temperature. Indeed, we observe that Form D is stabilized by

thermal effects and predicted to be more stable than Form A at the PBE0+MBD+F̃vib

level. In addition, inclusion of anharmonic vibrational free energies brings all of the

experimentally determined structures closer together, i.e., all of the Z ′ = 1 structures

are now within 0.4 kJ/mol.

In terms of the computational cost, the QHA adds 4,700 CPU hours to the 950 CPU

hours required for the initial PBE0+MBD+Fvib calculation in the average-sized form A

of system XXIII. For comparison, the corresponding Morse free energy calculation needs

an additional 4,300 CPU hours when all Γ-point modes are taken into account. There-

fore, the QHA and subsequent Morse free energy calculation increases the computation

time by approximately a factor of ten.

9.7 Summary

We have introduced a robust and computationally feasible procedure that yields accu-

rate and reliable descriptions of the structures and stabilities for the thermodynamically
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relevant polymorphs of molecular crystals. The diverse set of systems studied in this

work includes complex molecular crystals such as a salt, a co-crystal, and crystals con-

sisting of flexible large molecules of pharmaceutical interest. Our approach explicitly

accounts for all relevant enthalpic and entropic effects, including sophisticated treat-

ments of Pauli exchange-repulsion, many-body dispersion interactions, and vibrational

free energies at finite temperatures, all of which are directly obtained from quantum-

mechanical calculations. The approach presented herein takes us one step closer to

obtaining an enhanced fundamental understanding of polymorphic energy landscapes

and to routinely employing computational molecular crystal structure prediction in con-

junction with experimental polymorph screening. Such a joint theoretical-experimental

procedure offers a comprehensive and sustainable solution to the grand challenges asso-

ciated with molecular crystals polymorphs, whose very existence offers us the promise

of novel and hitherto unexplored pharmaceutical agents on one hand, and quite devas-

tating public health and economic repercussions on the other.
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Chapter 10

Benchmarking the DFT+MBD CSP

Procedure

In the previous chapter we have discussed the results obtained with our recommended

CSP procedure. However, due to the hierarchical nature, several approximations have

to be made. Therefore, we evaluate and discuss in this chapter the influence of sev-

eral settings and approximations made within our procedure. The results presented in

this chapter have been published in Faraday Discussions [195] and the following text is

adapted from Ref. 195 with permission from The Royal Society of Chemistry.

10.1 Computational Methods

For the benchmark of our stability-ranking procedure described in Chapter 9 we turn

again to the systems of the latest CCDC blind test [51] (see Fig. 8.1) and utilize all

experimentally confirmed structures and in addition a selected structure set for systems

XXII and XXIII (see Fig. 10.1). All calculations were performed by using the all-electron

code FHI-aims [74, 120–122, 160–162]. We use in general two accuracy levels, which

are labeled light and tight. The light level (l) corresponds to the light species default

settings in FHI-aims in terms of integration grids and basis functions used to describe

the Kohn-Sham orbitals. The number of used k-points (n) in each direction amounts to

the smallest integer number satisfying the relation n× a ≥ x, with a describing the unit

cell length in this direction and x being 25 Å. The tight level (t) corresponds to the tight

species default settings within FHI-aims and the number of k-points is determined as for

the light settings but with x = 30 Å. The following convergence criteria are used for all

calculations: 10−6 eV for the total energy, 10−5 electrons/Å3 for the charge density, 10−4

eV/Å for the forces, and 10−3 eV for the sum of the eigenvalues. The employed naming

scheme for structures corresponds to the labels used in the previous chapter [185].

Full lattice relaxations and geometry optimizations were performed by using the fol-

lowing methods: i) PBE+TS [34, 82] (pairwise Tkatchenko-Scheffler dispersion model),

ii) PBE+MBD [35, 64] (many-body dispersion model at the MBD@rsSCS level), and iii)

PBE0+MBD [84]. These optimizations were performed using the light settings and the
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(a) System XXII

Str. N1                     Str. N2                             Str. N3                   Str. N4                                  

                                 (Exp.)

    Form E                      Str. N18                   Str. N31                Str. N42      

     Str.  N70

(b) System XXIII  

    Form A                        Form B               Form C                    Form D

Figure 10.1: Visualization of the unit cell for all explicitly discussed structures. The
coordinates of all optimized structures are available in the Supporting Information of
Ref. 195. Adapted from Ref. 195 with permission from The Royal Society of Chemistry.

force components were converged to 0.005 eV/Å. In addition, the PBE+MBD optimiza-

tions were also carried out utilizing the tight settings. The PBE+TS structures [185]

were used as starting point for all other optimizations. The optimized structures were

symmetrized by using PLATON [187] and are provided in the Supporting Information

of Ref. 195. The agreement of the optimized structures w.r.t. experimental structures is

measured by the root-mean-square-deviation (RMSD) of 20 molecules within the crystal

(RMSD20) utilizing Mercury [186].

The relative static lattice energies based on DFT total energies were evaluated at the

PBE0+MBD level. These energies are obtained by calculating the difference between

PBE0+MBD and PBE+MBD energies at the light level and adding this difference to

PBE+MBD energies obtained at the tight level. This provides a good approximation

of converged PBE0+MBD energies [185] (see Chapter 9) and reduces the computation

time by about a factor of 10 compared to tight settings. All presented stability rankings

are normalized per chemical unit (per molecule for XXII, XXIII, XXVI; per formula

unit for XXV and XXIV).

Vibrational free energies were calculated utilizing PBE+TS, PBE+MBD, and PBE0+

MBD within the harmonic approximation using phonopy [123] on top of structures op-

timized at the same level. In general, vibrational free energies were calculated by using
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light settings. In addition, several structures were also calculated with PBE+MBD using

tight settings. The temperature used to evaluate the free energies corresponds always to

the temperature at which the experimental crystal structures were measured, i.e., 150

K for system XXII and 300 K for system XXIII. Displacements of 0.005 Å were used

throughout for the finite displacements. Unless stated otherwise, we used supercells

which extend at least 10 Å in every direction and the number of q-points for the recipro-

cal space sampling was calculated in the same way as the k-grid mentioned above, but

using x = 50 Å.

Thermally expanded structures corresponding to 300 K were calculated for several

structures of system XXIII within the QHA utilizing the PBE+TS method with light

settings [185] (see Chapter 9). In addition, the room temperature structure for XXIII-

A was calculated within the QHA utilizing entirely PBE+MBD with light settings for

energies and vibrational free energies. Furthermore, we also calculated the vibrational

free energies using PBE+MBD for the experimentally determined structures of system

XXIII. For that, we fixed the lattice vectors to the experimental values and optimized

only the atomic positions within the unit cells.

Finally, Morse free energies were calculated for several structures of system XXIII

using PBE+TS and PBE+MBD with light settings as described in Chapter 9. This

was done for the optimized structures as well as for thermally expanded structures

(QHA structure at 300 K for PBE+TS and experimental unit cell for PBE+MBD). The

method used for calculating the energy of the displaced structures corresponds always

to the method used for the harmonic vibrational free energies.

10.2 Static Lattice Energies

First, we further analyze the different stability rankings we have discussed in the previous

chapter. Therein, PBE+TS, PBE+MBD, and PBE0+MBD energies were calculated on

top of PBE+TS-optimized structures for all systems of the latest CSP blind test [51].

We will use throughout the labeling scheme of the blind test for all systems. This very

diverse set of systems includes a crystal consisting of a small and rigid molecule (XXII),

a highly polymorphic system comprised of a flexible molecule (XXIII), a salt (XXIV), a

co-crystal (XXV), and a crystal involving a large molecule (XXVI) (see Fig. 8.1). The

accurate description of all these systems using a consistent CSP method is challenging

due to the varying system sizes and their different chemical nature.

Let us start by discussing the importance of many-body dispersion (MBD) interac-

tions and exact exchange for relative static lattice energies. Fig. 10.2 shows a correlation

plot between PBE+TS and PBE+MBD energies for all systems. The most stable struc-

ture according to the PBE+MBD energies is always set to zero and all relative energies

are normalized per chemical unit (per molecule for XXII, XXIII, XXVI; per formula unit

for XXV and XXIV). In addition, perfect correlation is indicated with the black line and

intervals of 1 kJ/mol and 1 kcal/mol around this line are marked with the dotted lines.

It can be seen that for no system all data points are within the ± 1 kcal/mol energy

window. This immediately illustrates the crucial nature of MBD interactions given the
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Figure 10.2: Correlation between PBE+TS and PBE+MBD energies calculated on
top of PBE+TS-optimized structures[185]. The most stable PBE+MBD structure is
always set to zero and energies are normalized per chemical unit. Reproduced from Ref.
195 with permission from The Royal Society of Chemistry.

energy window for co-existing polymorphs. Furthermore, it can be seen that even re-

fitting a pairwise approach would not yield a significant improvement of the correlation,

given the large spread of the data points.

In order to numerically quantify the impact of MBD and exact exchange effects, we

calculated and compared for every system all possible relative energies between poly-

morphs. To illustrate the effect of MBD interactions we discuss the deviation between

the PBE+TS and PBE+MBD relative energies in terms of the mean absolute deviation

(MAD) and the maximum absolute deviation (MAX). These values are shown for every

system in Table 10.1. For system XXIII, the absolute deviations in relative energies are

also illustrated as Box plots in Fig. 10.3.

It can be seen that the average impact of MBD interactions on relative stabilities

varies between 1.8 and 3.2 kJ/mol. As expected, the least impact is found for the two

smallest systems involving rigid molecules. The largest impact is found for the former

drug candidate XXIII, which involves a quite flexible molecule, and the co-crystal XXV.

Note that the maximal observed change in relative energies is for all systems larger than

7.7 kJ/mol. Therefore, MBD interactions clearly cannot be neglected for any of the

studied systems.
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Table 10.1: Statistics for the impact of several interactions on all possible relative
energies expressed in terms of the mean absolute deviation (MAD) in kJ/mol and the
maximum absolute deviation (MAX) in kJ/mol for all studied systems [185]; PBE+MBD
vs. PBE+TS (MBD), PBE0+MBD vs. PBE+MBD (PBE0), PBE0+MBD+Fvib vs.
PBE0+MBD (Fvib). Reproduced from Ref. 195 with permission from The Royal Society
of Chemistry.

MBD PBE0 Fvib

System MAD MAX MAD MAX MAD MAX

XXII 1.8 7.7 1.1 4.6 0.5 1.0
XXIII 3.2 13.4 1.1 4.2 1.9 8.4
XXIV 1.9 7.8 2.0 8.2 0.9 1.8
XXV 3.2 15.2 1.4 5.1 1.6 3.2
XXVI 2.4 8.7 0.7 2.3 1.0 2.3
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Figure 10.3: Box plots of all possible absolute deviations in relative energies for system
XXIII.

Since MBD captures many-body interactions up to infinite order, we now investigate

the convergence of the relative energies. We can decompose the MBD energy into orders

n (n-atom contributions) according to Eq. 3.37. We illustrate this effect by using the

five experimentally observed forms of system XXIII and in addition also 4 low-energy

structures identified in Ref. 185 (see Fig. 10.4). These structures are visualized in Fig.

10.1. The plot shows the relative PBE+TS and PBE+MBD energies, with the MBD

interactions evaluated up to the shown n-atom contribution.

Already the 2-atom (pairwise) MBD energy is closer to the final PBE+MBD result

than the PBE+TS result. This is due to the fact that MBD includes in addition to
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Figure 10.4: Relative PBE+TS (a) and PBE+MBD (b) energies for several structures
of system XXIII. The energy of form C serves as reference and is set to zero. Part (b)
shows the relative PBE+MBD energies when MBD interactions are included up to the
shown n-atom contribution. Reproduced from Ref. 195 with permission from The Royal
Society of Chemistry.

many-body dispersion effects also dielectric screening effects. When we now include 3-

atom interactions, the relative energies change up to 3.7 kJ/mol. However, the relative

energies are by far not converged yet. Accounting in addition for 4-atom contributions

still changes relative energies up to 2.4 kJ/mol. Due to the oscillatory behavior only the

step from 5-atom to 6-atom contribution finally changes relative energies by less than 1

kJ/mol.

Now let us move on to the effect of exact exchange, i.e., switching from PBE to

the hybrid functional PBE0 (see Table 10.1). This step improves for example the de-

scription of electrostatics and charge transfer. In general, we can see that this effect is

less pronounced than the MBD effects with MADs varying between 0.7 and 2.0 kJ/mol.

However, since the maximal changes are between 2.3 and 8.2 kJ/mol this effect is signif-

icant enough to change stability rankings. Exact exchange has as expected the largest

effect on the salt, since this system has the largest electrostatic interactions. In addi-

tion, PBE0 is for example crucial for correctly identifying the experimental structure of

system XXII as the most stable structure [185, 190].

10.3 Geometries

All stabilities in our hierarchical CSP procedure discussed in Chapter 9 [185] have been

calculated on top of PBE+TS-optimized structures. Therefore, one natural step to im-

prove this procedure would be to include MBD interactions also in the lattice relaxations

and geometry optimizations. However, this would lead on average to an increase of force

calculation times of about 50 %. Therefore, we evaluate in this section the effect of MBD
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Table 10.2: Errors of optimized structures w.r.t. experimental measurements [51];
mean relative deviation (MRD), mean absolute relative deviation (MARD) as well as
maximum absolute deviation (MAX) in percent. The labels l and t indicate light and
tight species default settings within FHI-aims, respectively. For the cell angles we only
take into account values which are not exactly 90 degrees due to symmetry. Adapted
from Ref. 195 with permission from The Royal Society of Chemistry.

Method Quantity MRD MARD MAX

Lengths [%] -0.8 1.4 4.0
PBE+TS/l Angles [%] 0.8 1.5 4.3

Volume [%] -2.4 3.1 4.7

Lengths [%] -0.3 1.4 4.7
PBE+MBD/l Angles [%] 0.8 1.6 3.2

Volume [%] -0.9 2.2 3.8

Lengths [%] -1.3 1.6 3.8
PBE0+MBD/l Angles [%] 0.8 1.7 4.3

Volume [%] -3.7 3.8 5.9

Lengths [%] -0.3 1.4 4.1
PBE+MBD/t Angles [%] 0.7 1.4 2.7

Volume [%] -1.0 2.6 5.2

and also exact exchange effects on structures and corresponding stability rankings. We

have re-optimized all structures from Ref. 185 corresponding to experimentally observed

polymorphs using PBE+MBD and PBE0+MBD with light settings. In addition, the

structures were also optimized with PBE+MBD using tight settings to study the impact

of the used basis functions and integration grids. All optimized geometries are available

in the Supporting Information of Ref. 195 and the errors w.r.t. the experimental mea-

surements are shown in Table 10.2 (see also Appendix B). Let us start by discussing the

accuracy of the PBE+TS-optimized structures. It can be seen that on average we can

describe cell lengths and angles within 1 % of the experimental value and the mean abso-

lute relative deviation (MARD) amounts to 1.4 and 1.5 %, respectively. Furthermore, all

errors are less than 5 %. However, we underestimate the unit cell volume on average by

2.4 %. This is to be expected since molecular crystals tend to expand with temperature

and our cell relaxation does not include any thermal effects. The unit cell volume can be

improved by the utilizing the QHA, which will be discussed later on. Note that while we

are underestimating most unit cell volumes, we are overestimating the volume of systems

XXII and XXIV. In addition, the quality of the molecular structure is assessed in terms

of the RMSD20. On average our RMSD20 w.r.t the experimental structures amounts to

0.25 Å with a maximum of 0.48 Å (XXIII-E). The possibly disordered nature of form

E [51] is most likely the reason for the observed relatively large RMSD20. Overall, our

PBE+TS-optimizations yield already structures of good quality.

Now let us turn to the PBE+MBD (light) optimizations. The description of cell

lengths and angles is comparable with the PBE+TS results, but the errors in the cell
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Figure 10.5: Relative PBE0+MBD energies of the five experimental polymorphs of
system XXIII for different optimization methods. Reproduced from Ref. 195 with
permission from The Royal Society of Chemistry.

volume are now much smaller. PBE+MBD consistently yields larger unit cell volumes

than PBE+TS. This is due to the fact that the pairwise dispersion approach tends to

overestimate intermolecular interactions [40]. In terms of the RMSD20 one can only see

a minor improvement with the average and the maximum amounting to 0.24 and 0.45

Å, respectively. When we move on to PBE0+MBD, we again see a similar picture for

cell lengths and angles. However, the exact exchange leads to significantly smaller unit

cell volumes. Now, the unit cell volume of XXII is only slightly overestimated by 0.6 %.

On average, unit cell volumes are underestimated by 3.7 %. Again, this underestimation

originates due to the missing thermal expansion in our structures and has to be expected.

In terms of the RMSD20 the PBE0+MBD structures yield very similar results to the

previously discussed methods with an average of 0.23 Å and a maximum of 0.47 Å.

Finally, let us discuss the PBE+MBD optimizations with tight settings. It can be seen

that the cell lengths and angles are only slightly better compared to the light settings

and also the unit cell volumes are not changing significantly. Also the RMSD20 values

are again similar with an average of 0.23 Å and a maximum of 0.46 Å. Therefore, we

can conclude that light settings provide already a sufficient description of the crystal

structure.

Overall, all discussed methods provide quite similar structures, especially in terms

of the cell lengths and angles, as well as the RMSD20. The only major difference is the

cell volume, which in general follows the following trend: PBE0+MBD < PBE+TS <

PBE+MBD.

The main focus of all CSP approaches is the stability ranking or in other words the

polymorphic energy landscape. Therefore, we discuss now the effect of the optimiza-

tion method on the relative stabilities for the five experimentally obtained structures
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of system XXIII. The final static lattice energies within our CSP procedure are always

calculated on the PBE0+MBD level. Hence, Fig. 10.5 shows the relative PBE0+MBD

energies calculated on top of the differently optimized structures. We again discuss

the differences with the mean absolute deviation (MAD) and the maximum absolute

deviation (MAX) evaluated based on all possible relative energies. Changing the lat-

tice relaxations from PBE+TS (light) to PBE+MBD (light) yields a MAD of only 0.3

kJ/mol with a MAX of 0.6 kJ/mol. PBE0+MBD optimizations yield 0.4 and 0.8 kJ/-

mol, respectively. Utilizing tight settings for PBE+MBD optimizations instead of light

settings yield a MAD of 0.3 kJ/mol with a MAX of 0.5 kJ/mol. This illustrates that

the PBE0+MBD energy ranking is only mildly affected by improving the optimization

method, with all changes in relative energies being less than 0.8 kJ/mol. In addition,

Mortazavi et al. have shown that computationally very efficient density functional tight

binding optimizations could be used for a pre-screening when the stability is subse-

quently evaluated with PBE+MBD on top of these structures [196].

10.4 Vibrational Free Energies

In order to describe relative stabilities at finite temperatures, it is necessary to include

thermal effects. The simplest way to achieve this, is to add to the electronic energies

(and the nuclear repulsion) the vibrational free energy. This leads then to Helmholtz

free energies, which include entropic effects. The vibrational free energy Fvib(T ) can be

calculated within the harmonic approximation according to Eq. 4.5. However, accurate

calculations are not as straightforward as simple energy calculations. For accurate results

it is imperative that there are no imaginary modes present at the Γ-point. Such modes

indicate that this structure does not correspond to a local minimum of the potential

energy surface and also drastically change the vibrational free energy. The relative free

energies are essentially determined by the low-frequency modes, since they have the

largest impact on the entropic contributions. This is illustrated in Fig. 10.6. The left

part of the figure shows the low-frequency pDOS for three XXIII structures. The right

part of the figure illustrates the corresponding cumulative vibrational free energy for low

frequencies, i.e. only phonon modes up to the plotted wave number are considered. The

vibrational free energy of structure N70 always defines the zero of the energy and the

final relative vibrational free energies after taking into account all modes are indicated

with the three lines outside of the right plot. It can be seen that the relative vibrational

free energies are essentially determined by low-frequency modes up to about 200 wave

numbers. These low-frequency modes contain intermolecular motions and therefore vdW

interactions play an important role for them.

Furthermore, calculating the vibrational free energy for the Γ point of the unit cell is

insufficient for accurate results, which we will illustrate using our set of 9 structures for

system XXIII. Fig. 10.7 shows relative stabilities in terms of the Helmholtz free energies

at 300 K, for which the vibrational free energy was calculated at the PBE+TS level.

Since we are using finite displacements, we have to avoid artifacts between displacements

in periodic images. It was shown that at least 9-10 Å are necessary in every direction in
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Figure 10.6: Low frequency part of the phonon density of states (pDOS) for three
structures of system XXIII (left) and the corresponding cumulative relative vibrational
free energies w.r.t the wave number (right). The vibrational free energy of structure N70
is always set to zero and the vibrational free energy is evaluated based on the pDOS up
to the shown wave number. The right plot shows the low-frequency part up to 300 wave
numbers. The final relative vibrational free energies after taking into account all modes
are indicated with the three lines outside of the right plot. Reproduced from Ref. 195
with permission from The Royal Society of Chemistry.

order to minimize artifacts [40]. Therefore, we have used for all phonon calculations in

our CSP procedure [185] super cells, which extend at least 10 Å in every direction. All

values of part (a) in Fig. 10.7 were calculated with these cells but the vibrational free

energy was evaluated differently. At first, the vibrational free energy was evaluated by

only using the modes at the Γ-point of the unit cell (uc), followed by the Γ point of the

used supercell (sc). In all other cases the vibrational free energy was evaluated with a

q-grid in reciprocal space utilizing the q-point interpolation available in phonopy [123].

The number (n) of necessary q-points in each direction was calculated according to

n × a ≥ x, with a being the cell length in the respective direction and the used values

of x are given in the plot. It can be seen that both Γ-point plots provide a completely

different stability ranking compared to the converged reciprocal space sampling. This is

mainly due to the fact that the three acoustic modes have zero frequency at the Γ point

but contribute significantly for other q-points. Note that for forms A, D, and structure

N70 the supercell is identical to the unit cell, since in these unit cells all cell lengths are

already larger than 10 Å. Convergence to 0.1 kJ/mol is reached at x = 50 Å.

Part (b) of Fig. 10.7 illustrates the importance of the used supercell for the finite

difference calculations. Here, the vibrational free energy is always evaluated with a
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Figure 10.7: Convergence of vibrational free energies. Part (a) shows the relative sta-
bilities of 9 structures from system XXIII calculated with PBE0+MBD+Fvib(PBE+TS)
at 300 K, where supercells with cell lengths of at least 10 Å were used for the finite dif-
ference calculation. The vibrational free energy was evaluated using only the Γ point
modes of the unit cell (uc), the Γ-point modes of the used supercell (sc), or with a
q-point mesh with the shown values used for x (see Methods). In part (b) a converged
q-point mesh is used throughout but the finite difference calculations were performed
by either using just the unit cell or supercells with minimum cell lengths of 10 and 14
Å, respectively. Reproduced from Ref. 195 with permission from The Royal Society of
Chemistry.

q-point grid corresponding to x = 50 Å but we used different cell sizes for the finite

difference calculations. First, the calculations were performed by only using the unit

cells (uc), followed by the smallest supercells which extend in every direction at least 10

Å and 14 Å, respectively. The MAD when comparing all relative energies between the

unit cell and the 10 Å supercell approach amounts to 3.3 kJ/mol with a maximum of

6.8 kJ/mol. Moving from the 10 Å to the 14 Å supercells leads to a MAD of only 0.3

kJ/mol with a maximum energy change of 0.9 kJ/mol. This illustrates how crucial these

supercells are for accurate vibrational free energies. In addition using larger supercells

than 10 Å has only a minor effect on the relative stabilities and does not merit the

immense increase in computation time. In general, the larger the supercell, the more

points in reciprocal space are evaluated exactly, which increases the quality of the q-

point interpolation used in phonopy. For most of the unit cell calculations one can

see in the phonon band structure that the three acoustic modes are poorly described

away from Γ. This is illustrated for structure N18 in Fig. 10.8. For the corresponding

10 Å supercell we find that one acoustic mode is still not properly resolved leading to

imaginary frequencies away from the Γ point, while for the 14 Å supercell all issues with

imaginary modes are resolved.

Now let us discuss the impact of the vibrational free energies on stability rankings

(see Table 10.1). The average impact in terms of the MAD varied for the five systems
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Figure 10.8: Low-frequency phonon band structure plot along several high-symmetry
lines for structure XXIII-N18 calculated using the unit cell (a), a supercell with a min-
imum length of 10 Å (b), and a supercell with a minimum length of 14 Å (c) in every
direction. Reproduced from Ref. 195 with permission from The Royal Society of Chem-
istry.
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method. The vibrational free energies were calculated at the temperature of the re-
spective experimental crystal structure measurements (150 K for XXII and 300 K for
XXIII). Reproduced from Ref. 195 with permission from The Royal Society of Chem-
istry.

from 0.5 to 1.9 kJ/mol. While this effect is not that pronounced for systems involving

rigid molecules, it can be crucial for the stability ranking of systems involving flexible

molecules. For our highly polymorphic system XXIII vibrational free energies can change

relative stabilities up to 8.4 kJ/mol.

All so far discussed vibrational free energies have been calculated with PBE+TS.

Therefore, we now evaluate what impact MBD interactions and exact exchange have on

the vibrational free energies. Let us begin by discussing the effect of MBD based on the

four most stable structures of system XXII and 9 structures of system XXIII (see Fig.

10.9). The total energy is always evaluated with PBE0+MBD while the vibrational free

energy is calculates by using PBE+TS and PBE+MBD, respectively. For system XXII

we observe only minor changes in the relative stabilities; relative energies change on

average by 0.4 kJ/mol and the maximum change amounts to 0.7 kJ/mol. In contrast,

the effect of MBD interaction on the vibrational free energies is much stronger for system

XXIII with an average change of 1.2 kJ/mol and a maximum modification of 3.1 kJ/mol.

This is consistent with Ref. 42, which shows that MBD interactions change the relative

free energy between two polymorphs of aspirin by about 3 kJ/mol. In general, MBD

effects are more pronounced for cells with little symmetry involving especially flexible

molecules.

Furthermore, let us discuss the influence of exact exchange on vibrational free ener-

gies. Therefore, two structures from system XXII, for which exact exchange significantly

modified the relative stability, were selected as well as 3 structures from system XXIII,

for which no supercell is necessary for the accurate evaluation of the vibrational free
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Table 10.3: Relative free energies in kJ/mol. The total energy was always calculated
with PBE0+MBD and the structure optimization as well as the vibrational free energy
was performed with the labeled method. The vibrational free energies were always cal-
culated at the experimental measuring temperature of the respective crystal structures
(150 K for XXII and 300 K for XXIII). Reproduced from Ref. 195 with permission from
The Royal Society of Chemistry.

Method ∆XXIIa ∆XXIII-1b ∆XXIII-2c ∆XXIII-3d

PBE+TS/l 2.5 0.2 4.3 4.1
PBE+MBD/l 2.6 1.5 2.4 0.9
PBE0+MBD/l 2.0 -0.8 0.3 1.1
PBE+MBD/t 2.2 1.0 2.4 1.3

a ∆XXII = F (XXII − N1) − F (XXII − N2), b∆XXIII − 1 = F (XXIII − D) − F (XXIII − A),
c∆XXIII − 2 = F (XXIII − D) − F (XXIII − N70), d∆XXIII − 3 = F (XXIII − A) − F (XXIII − N70).

energy. This benchmark set provides 4 relative free energies (see Table 10.3). The struc-

ture optimization and the calculation of the vibrational free energy is done with the

respectively mentioned method, while the total energy is evaluated with PBE0+MBD.

In addition, the PBE+MBD calculations were also performed by using the tight settings

in order to evaluate if a larger basis set would significantly change the result. The differ-

ence between PBE0+MBD and PBE+MBD (light) amounts to 1.3 kJ/mol in terms of

the MAD and the maximal observed change is 2.3 kJ/mol. The MAD between PBE+TS

and PBE0+MBD amounts to 2.1 kJ/mol with a maximum of 3.9 kJ/mol. Hence, exact

exchange still modifies relative vibrational free energies, however, this effect is not large

enough to justify the massive additional computational cost for production calculations.

In addition, increasing the basis set yields only a minor modification of the relative sta-

bilities with a maximum change of 0.5 kJ/mol.

10.5 Computational Cost

The computational cost of single-point energy calculations, lattice optimizations, and

vibrational free energies highly depends on the size and shape of the involved unit cells.

Here we discuss the computation times for form A of system XXIII. This monoclinic unit

cell contains 172 atoms, which is only slightly less than the average unit cell size studied

in Ref. 185. Table 10.4 shows the relative computation times for one single-point energy

and one force calculation for all discussed methods. The values are normalized to the

PBE+TS single-point energy calculation with light settings (l), which needs 2.1 CPU

hours on Intel Xeon E5-2680 v4 cores (2.4 GHz). It can be seen that the calculation of the

many-body dispersion energy (MBD) adds only a negligible cost on top of the PBE+TS

calculation. However, PBE+MBD forces need about 50 % more computation time than

PBE+TS forces when computed at the light level. PBE0 calculations are at the light

level about 17 times more expensive than PBE calculations. Furthermore, utilizing

tight settings (t) increases the computation time of a PBE+MBD energy calculation by

a factor of about 10 compared to light settings. When utilizing tight settings, PBE+TS
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Table 10.4: Relative computation times for one single energy and force calculation of
structure XXIII-A (172 atoms in the unit cell). All computation times were normalized
to the PBE+TS/l energy calculation, which amounts to 2.1 CPU hours on Intel Xeon
E5-2680 v4 cores (2.4 GHz). Reproduced from Ref. 195 with permission from The Royal
Society of Chemistry.

Method Energy Force

PBE+TS/l 1.0 1.4
PBE+MBD/l 1.0 2.1
PBE0+MBD/l 16.9 18.2
PBE+MBD/t 9.8 13.2

and PBE+MBD force calculations are essentially equally expensive since almost all

computation time is spent on the underlying DFT calculation.

The number of needed optimization steps in a geometry and lattice optimization

highly depends on the starting structure, i.e. how similar the initial molecular confor-

mation and the unit cell shape are to the optimized structure. Typically, 50 - 100 steps

are necessary to converge a structure with used settings. Therefore, the computation

time amounts to about 50 - 100 times the time needed for one force calculation. The

calculation of the harmonic vibrational free energy requires for XXIII-A 258 finite dis-

placements and therefore also 258 force calculations. In this particular case the unit cell

is sufficient for the finite differences calculation and no supercell is needed. Therefore,

the calculation of the vibrational free energy of XXIII-A using PBE+TS with light set-

tings requires about 750 CPU hours.

10.6 Beyond the Harmonic Approximation

So far we have calculated all free energies on top of the fully optimized structures.

However, molecular crystals expand with increasing temperature. This structural change

could lead to a modification of the relative stabilities. The simplest approach of including

the effect of thermal expansion on a first-principles level is the QHA [13, 143, 147, 148,

197–199]. In this approach the vibrational free energy is calculated within the harmonic

approximation for several unit cell volumes, and the volume at a certain temperature is

determined by an equation-of-state (EOS) fit. We have calculated the cells corresponding

to 300 K within the QHA for 9 structures from system XXIII [185]. Note that in this

case we use PBE+TS for structures, vibrational free energies, as well as for the total

energies. This approach yields unit cell volumes which agree on average within 1 % with

the experimental structures (see Appendix B). The largest error was found for form E,

where the unit cell volume is underestimated by 1.7 %.

The thermal expansion for form A is illustrated in Fig. 10.10 (a) at the PBE+TS

level. The dots correspond to the harmonic free energies calculated at various volumes

and at three different temperatures. The solid curves correspond to the Murnaghan

equation-of-state fit, and the respective minimum is always marked with the red triangle.
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Figure 10.10: Illustration of the QHA thermal expansion for form A of system XXIII
as described by PBE+TS (a) and PBE+MBD (b). The dots correspond to the harmonic
free energies calculated at various volumes and at three different temperatures. The solid
curves correspond to the Murnaghan equation-of-state fit, and the respective minimum
is always marked with the red triangle. The light blue line indicates the volume of the
fully optimized structure. Reproduced from Ref. 195 with permission from The Royal
Society of Chemistry.

In addition, the light blue line indicates the volume of the fully optimized structure.

Already the inclusion of zero-point energy (0 K) leads to a volume increase of 0.4 %.

At 150 and 300 K the thermal volumetric expansion in comparison with the optimized

structure amounts to 1.3 and 2.5 %, respectively. The resulting volume at 300 K agrees

within 0.7 % with the experimentally measured volume at that temperature. The QHA

is sometimes performed by isotropically scaling the cell [58]. Since we perform lattice

relaxations using a thermal pressures, we get an estimate for the directional thermal

expansion. In this example the thermal expansion is quite different in all directions and

amounts for the cell lengths a, b, and c to 0.8 %, 1.4 %, and 0.2 %, respectively. In

addition, we have also performed the QHA for form A utilizing exclusively PBE+MBD

(see Fig. 10.10 (b)). In this case the thermal expansion amounts at 300 K to 3.3 %,

which overestimates the experimental cell volume by 1.9 %. However, when we pair the

PBE+MBD phonons with PBE0+MBD total energies, the resulting volume agrees in

this case within 0.2 % with the experimental volume. PBE+MBD prefers in general

larger volumes than PBE+TS which leads here to an overestimation of the cell volume

at 300 K. In contrast, the effect of exact exchange significantly reduces the cell volume.

Overall, the QHA entirely done at the PBE+TS level provides a good description of the

unit cell volume at room temperature.
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Figure 10.11: Relative stabilities for 9 structures of system XXIII for optimized and
thermally expanded structures. The relative stability consists of the PBE0+MBD total
energy plus the vibrational free energy evaluated with the respective method. The vibra-
tional free energy was calculated in the harmonic approximation at 300 K. Reproduced
from Ref. 195 with permission from The Royal Society of Chemistry.

Next, let us focus on how the QHA affects the relative stabilities. Therefore, the

left part of Fig. 10.11 compares the relative stabilities of the optimized XXIII struc-

tures with the thermally expanded ones. The total energies are again calculated with

PBE0+MBD and the vibrational free energies with PBE+TS. It can be seen that the

QHA only mildly modifies the relative stabilities, with an average change amounting to

0.4 kJ/mol and a maximum of 1.4 kJ/mol. At this level we find all so far experimen-

tally observed structures within an energy window of only 2.6 kJ/mol, which in general

corresponds quite well with the expected energy window of co-existing polymorphs. In

comparison, Brandenburg and Grimme [58] also studies the experimentally confirmed

polymorphs of system XXIII with the QHA utilizing a minimal basis set Hartree Fock

method [200] (HF-3c) as well as density functional tight binding [201] (DFTB) calcula-

tions for vibrational free energies, and TPSS-D3 [32, 202] for total energies. In their case

the spread between the experimental structures is much larger, amounting to 8 kJ/mol.

Experimental evidence [51] suggests that form D should be the most stable one at room

temperature. However, in our ranking form E is the most stable one and form D is

in fact the second least-stable one. In addition, we find one structure (N70), which is

described as more stable than any experimental structure.

Harmonic PBE+MBD vibrational free energies at the optimized structures describe

form D as the least stable and form E as the most stable form, with a spread of 3

kJ/mol. Therefore, we investigated if we could reproduce with PBE+MBD phonons the

expected stability ranking, assuming that we have the knowledge of the exact unit cell.

These calculations were performed using the experimental cell vectors and the results

123



10 Benchmarking the DFT+MBD CSP Procedure

0

2

4

6

8

10

R
e
la

ti
v
e
 s

ta
b
ili

ty
 [
k
J
/m

o
l]

Form A

Form B

Form D

Form E

Str. N18

Str. N31

Str. N42

Str. N70

Form C

PBE+TS             PBE+TS            PBE+MBD         PBE+MBD

    opt.                    QHA                    opt.                 exp. cell

Figure 10.12: Relative stabilities for 9 structures of system XXIII for optimized and
thermally expanded structures. The relative stability consists of the PBE0+MBD total
energy plus the vibrational free energy evaluated with the respective method. The
vibrational free energy was calculated using Morse oscillators at 300 K. Reproduced
from Ref. 195 with permission from The Royal Society of Chemistry.

are shown in the right part of Fig. 10.11. In this case all experimental structures differ

by less then 0.8 kJ/mol, which means that given our expected accuracy all structures

are in fact degenerate.

All so far discussed vibrational free energies have been determined within the har-

monic approximation. However, in reality these modes are not entirely harmonic.

Therefore, we have estimated anharmonic vibrational free energies by replacing the

harmonic oscillators by Morse oscillators [104, 105]. These anharmonic free energies

were calculated for all optimized and thermally expanded structures with PBE+TS and

PBE+MBD, respectively. The resulting stability rankings are shown in Fig. 10.12.

It can be seen that in case of optimized structures, form D is always described as

the least stable structure and that the spread of the relative energies is larger than for

harmonic vibrational free energies. Let us now focus on the PBE+TS QHA results. Here,

form D is highly stabilized by the thermal expansion and all experimental structures are

getting closer in terms of energies. Now, all experimental structures are found within an

energy window of only 1.5 kJ/mol. Form C is described as the most stable experimental

structure. However, we underestimate the unit cell volume of form C much more than

for form D. Since a further increase in the unit cell volume would lead to higher energies,

we can expect further destabilization of form C if we would have even more accurate unit

cells. Interestingly, form N70 is still described as the most stable structure (see Chapter

9 for a discussion). Overall, the result of the QHA with PBE+TS anharmonic free

energies already agrees well with the experimental expectation in terms of the stability

ranking. Given our expected accuracy, all experimentally confirmed polymorphs are
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essentially degenerate. The difference between this stability ranking (performed on top

of thermally expanded structures utilizing Morse oscillators) and harmonic free energies

evaluated at optimized structures amounts on average to 1.1 kJ/mol and the maximal

observed change is 2.9 kJ/mol.

Finally, let us discuss the anharmonic free energies calculated with the experimental

cell vectors with PBE+MBD. In this case all experimental structures except form E

are found within an energy window of only about 0.2 kJ/mol. This picture agrees very

well with the available experimental observations. However, form E is described as 2.2

kJ/mol less stable than the other polymorphs. This large difference occurs probably

because the optimized PBE+MBD structure has a quite large RMSD w.r.t. the exper-

imental structure (0.45 Å), most likely due to potential disorder in the experimental

form E. We note that this approach for calculating anharmonic free energies does not

take into account the interactions between phonon modes. More accurate anharmonic

free energies could be obtained by using for example the vibrational self-consistent field

approach [203–205] or path-integral molecular dynamics [206].

10.7 Summary

We have presented in this chapter an in-depth discussion how crucial various commonly

neglected effects are for the calculation of relative stabilities of molecular crystal poly-

morphs. Many-body dispersion effects, exact exchange, and vibrational free energies all

contribute significantly to the obtained relative stabilities. Therefore, none of the stud-

ied effects can safely be neglected, especially for systems involving flexible molecules.

We have shown that our hierarchical CSP approach presented in Chapter 9 [185], which

yields excellent results for the systems of the latest blind test, is already quite robust.

Increasing the basis set for structures and vibrational free energies does not significantly

change the resulting stability ranking. In addition, the evaluation of vibrational free en-

ergies at the PBE+TS level instead of PBE0+MBD results in an average absolute error

of about 2 kJ/mol. Many-body dispersion interactions affect the vibrational free ener-

gies on average by about 1 kJ/mol but can change relative stabilities in system XXIII up

to 3 kJ/mol. In the case of aspirin polymorphs, these interactions are crucial to obtain

the correct stability [42]. Given the recent development and efficient implementation of

analytical nuclear gradients for MBD [89, 207], geometry optimizations and vibrational

free energies could be performed with PBE+MBD instead of PBE+TS in case of com-

plicated polymorphic energy landscapes. This would increase the computation time for

forces on average by about 50 %.

Furthermore, we have studied the effect of thermal expansion within the QHA. The

resulting thermally expanded structures obtained at the PBE+TS level provide accurate

unit cell volumes. However, the relative stabilities remain very similar to the ones of the

fully optimized structures. In addition, we also estimated anharmonic free energies by

using Morse oscillators. These results are for system XXIII in good agreement with the

available experimental information on relative stabilities. Including the QHA as well as

the anharmonic free energy estimates change relative stabilities on average by about 1
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10 Benchmarking the DFT+MBD CSP Procedure

kJ/mol. Therefore, the harmonic approximation on top of fully optimized structures

will often provide sufficient results in case of already well-separated energy landscapes.
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Chapter 11

Relative Stabilities of the Five

Coumarin Polymorphs

After this discussion of the five blind-test systems, we apply the DFT+MBD framework

now to another highly polymorphic system — coumarin. The availability of experimen-

tal relative stabilities provides us with the opportunity to benchmark our calculated

stabilities now also on a quantitative level. The molecular structure of a coumarin

molecule is visualized in Fig. 11.1. This rather simple organic compound is for example

used in perfumes and as a precursor for the synthesis of drugs. In 1929, two forms

of coumarin were found by Bernauer [208] via crystallization from the melt. In 1934,

Kofler and Geyr [209] identified one monoclinic and one orthorhombic form of coumarin.

In 1939, Lindpaintner [210] obtained three polymorphs with different melting points.

Figure 11.1: Illustration of a coumarin molecule and the unit cells of the five coumarin
polymorphs.
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11 Relative Stabilities of the Five Coumarin Polymorphs

While coumarin was clearly studied for quite some time, only one solid form (form I)

was solved [211–213]. In Ref. 60 the crystal structures of four additional coumarin poly-

morphs are obtained via X-ray powder diffraction in synergy with computational CSP.

The resulting five coumarin polymorphs are illustrated in Fig. 11.1. In this chapter,

we show the polymorphic energy landscape obtained with PBE+TS and PBE+MBD

using 50 low-energy structures from the two utilized CSP approaches [60]. Furthermore,

we discuss the relative stabilities of the five coumarin polymorphs obtained with our

DFT+MBD framework. The results presented in this chapter have been published in

Chemical Science [60]. The author of this thesis contributed to that publication all

DFT+TS and DFT+MBD calculations within FHI-aims, which are described below.

11.1 Computational Methods

In Ref. 60 two different CSP procedures were employed. In the first case, the crystal

structure search was carried out by using an evolutionary algorithm within the USPEX

code [214–217] and the structure relaxations were performed within DMACRYS [180].

The employed distributed multipole model was derived from MP2 charge densities and

the FIT [218] empirical potential was used to describe exchange repulsion and dispersion

interactions. The second CSP approach utilized a random structure search via the UP-

ACK software [219] based on a rigid molecular structure determined with PBE0. The

corresponding energies were evaluated with a modified OPLS force field [220]. The re-

sults of both CSP approached were combined to create a set of 50 low-energy structures,

which were subsequently relaxed with the vdW-DF2 functional [221]. This structure set

served as starting point for our own calculations.

First, we calculated the PBE+TS [34, 82] and PBE+MBD [35, 64] energies on top

of the vdW-DF2-optimized structures. All electronic structure calculations were carried

out using the all-electron code FHI-aims [74]. Tight species default settings were used

for integration grids and basis functions and the k-point mesh satisfied in every direction

a × n ≥ 30 Å, with a being the cell length in a particular direction and n being the

corresponding number of k-points.

Next, we studied the five experimentally observed polymorphs in more detail. There-

fore, full lattice relaxations were performed using PBE+MBD with light species default

settings in FHI-aims, converging force components to 10−3 eV/Å. Subsequently, the

energies of the five polymorphs were calculated with PBE+MBD using tight species de-

fault settings and with the PBE0+MBD approach utilized in the previous two chapters.

Therein, the PBE0+MBD energy is calculated by adding the energy difference between

PBE0+MBD/light and PBE+MBD/light to the obtained PBE+MBD/tight energies

(see Chapter 9). Furthermore, the vibrational free energies were calculated for all five

structures in the harmonic approximation using PBE+MBD with light species default

settings. Finite displacements of 0.005 Å were used and the vibrational free energies

were evaluated using phonopy [123]. Supercells with at least 10 Å in every direction

were used for the finite-displacements calculations in order to minimize artifacts. In

128



11.2 Polymorphic Energy Landscapes

addition, all these calculations were also carried out for forms I and V using the ex-

perimental cell vectors at 300 K and on top of the optimized structures utilizing tight

species default settings.

11.2 Polymorphic Energy Landscapes

First, we discuss the polymorphic energy landscapes formed by the 50 low-energy struc-

tures obtained from the employed CSP procedures. Fig. 11.2 shows the obtained PBE+TS

and PBE+MBD landscapes. In the PBE+TS case we find all 50 structures within an

energy interval of 10 kJ/mol with form I being the most stable structures. All five ex-

perimentally observed polymorphs are located within the top 2.3 kJ/mol. This energy

interval contains also 17 other structures, from which 5 can be considered polytypes of

form I and II. These results are quite similar to the preceding vdW-DF2 energies [60],

for which dispersion interactions are also included in a pairwise fashion. In this case,

all experimentally confirmed polymorphs are found within 2.5 kJ/mol and this energy

interval contains 15 other structures (see Ref. 60 for more details).

In the PBE+MBD case all 50 structures are within 7 kJ/mol and all five experimen-

tally obtained polymorphs are located within only 1.8 kJ/mol. These top 1.8 kJ/mol

contain except forms I-V only 4 other structures, where three of them can be considered

polytypes of form I. Hence, the PBE+MBD energies show a much better separation

between observed and non-observed structures than the pairwise approaches. This fur-

ther highlights the importance of MBD interactions for polymorph stabilities. However,
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Figure 11.2: PBE+TS and PBE+MBD stability vs. volume for 50 vdW-DF2-
optimized structures of coumarin.
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11 Relative Stabilities of the Five Coumarin Polymorphs

note that thermodynamic stability rankings can always include non-observed low-energy

structures which are kinetically instable or have not been crystallized yet.

11.3 Relative Stabilities of Forms I–V

Now let us discuss in detail the five experimentally observed polymorphs. Experimental

evidence [60] suggests that the relative stability ordering at and above room temperature

should be I>II>III>IV>V. This is based on observed transition between the forms and

melting point differences with and without a Canada balsam additive. Form I was

up to now the only characterized form and there is no evidence of a low-temperature

phase transition, suggesting that form I is very likely the most stable polymorph. Due

to the structural similarity of form III and IV they are expected to be energetically

very similar. Form V is only stable for a short period of time under ambient conditions,

suggesting that it is the least stable form. The experimentally determined relative Gibbs

free energies around the melting points are listed in Tab. 11.1. It can be seen that all

five polymorph lie in a very narrow energy interval of 0.8 kJ/mol. For more information

the reader is referred to Ref. 60.

The calculated PBE0+MBD relative energies on top of the PBE+MBD-optimized

structures are shown in Tab. 11.1. It can be seen that we observe the same stability

ordering as in experiment, but the relative stabilities differ by up to 1.5 kJ/mol from the

experimental values. In Ref. 60 a variety of different vdW-inclusive DFT methods were

studied, but only methods including MBD interactions yielded this qualitative ordering.

However, since we have established during the previous chapters that vibrational

free energies can be of significant importance for the relative stabilities of polymorphs,

we have added vibrational free energies calculated at the PBE+MBD level to the static

PBE0+MBD results. The resulting Helmholtz free energies are plotted up to 350 K

in Fig. 11.3 and listed in Tab. 11.1 for 300 K and for the average melting point

(340 K). It can be seen that the relative stabilities vary significantly with temperature.

Especially, form V is significantly stabilized by temperature effects w.r.t. form I. At 300

Table 11.1: Relative stabilities in kJ/mol calculated using the PBE+MBD/light-
optimized structures with different methods compared to the experimental estimates
around 340 K (Exp.) [60]. The Helmholtz free energies F at 300 and 340 K are the
sum of the PBE0+MBD static energy and the vibrational free energy calculated with
PBE+MBD/light.

Polymorph E(PBE+MBD) E(PBE0+MBD) F (300 K) F (340 K) Exp.

Form I 0.0 0.0 0.0 0.0 0.0
Form II 0.2 0.3 0.7 0.8 0.2
Form III 0.7 1.2 0.9 0.9 0.2
Form IV 1.1 1.8 0.9 0.8 0.3
Form V 1.1 2.2 0.2 0.0 0.8

130



11.3 Relative Stabilities of Forms I–V

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

0 50 100 150 200 250 300 350

R
e

la
ti
v
e

 f
re

e
 e

n
e

rg
y
 /

 k
J
/m

o
l

Temperature  /  K

I

II

III

IV

V

Figure 11.3: Relative Helmholtz free energies vs. temperature for the five coumarin
polymorphs. The shown free energies are the sum of the PBE0+MBD static energy
and the vibrational free energy calculated with PBE+MBD/light. The energy of form I
defines at every temperature the zero of the energy [60].

K we observe the following stability ordering: I>V>II>IV≈III. Now, form I remains

the most stable polymorph and forms III and IV have as expected essentially the same

stability. In contrast to experiment, form V is now described as the second most stable

structure. To rationalize this stabilization, the low-frequency phonon density of states

(pDOS) is plotted in Fig. 11.4 for forms I and V. The main difference in the free energy

originates from the fact that form V has a larger pDOS at very low frequencies (< 50

cm−1) than form I. In order to determine if this stabilization of form V could be related

to the light settings utilized in the phonon calculations, the vibrational free energy was

also calculated using tight settings. The resulting qualitative trend between form I and

V remains the same, yielding at 300 K an energy difference of only 0.3 kJ/mol in favor

of form I. Furthermore, we also calculated the Helmholtz free energies of forms I and

V using the experimentally measured cell vectors at 300 K. Also in this case, form V is

stabilized by temperature effects and the energy difference to form I amounts at 300 K

again to 0.3 kJ/mol. Therefore, thermal expansion has only a negligible effect on these

relative stabilities. In Ref. 60 also full molecular dynamic simulations were performed

with an OPLS force field, which revealed that form V is in fact destabilized w.r.t. form

I due to anharmonic effects.

Finally, let us compare our calculated relative stabilities to the experimental Gibbs

free energies. We utilize for this comparison the Helmholtz free energies obtained at the
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Figure 11.4: Low-frequency phonon density of states for coumarin forms I and V
according to PBE+MBD.

average melting point of 340 K (see Tab. 11.1). Note that our obtained Helmholtz free

energies can also be interpreted as Gibbs free energies since the additional pV term has

only a negligible impact on the relative stabilities at ambient conditions. It can be seen

that all five polymorphs are found within 0.9 kJ/mol. Although we observe a slightly

different stability ordering, the largest error w.r.t. the experimental relative stabilities

amounts to only 0.8 kJ/mol.

11.4 Summary

In this chapter we have studied the relative stability of coumarin polymorphs using

the DFT+MBD framework. Many-body dispersion interactions lead in this case to a

better separation between observed and non-observed structures in the polymorphic

energy landscape than pairwise vdW approaches. The calculated relative free energies

consisting of PBE0+MBD static energies and PBE+MBD vibrational free energies agree

within 1 kJ/mol with the experimentally obtained relative Gibbs free energies and satisfy

most observations in terms of the stability ordering of the polymorphs.

132



Chapter 12

Conclusion

A lot of progress has been made during the last few years in the modeling of molecular

crystals from first principles. Nowadays, such methods can be applied to practically

relevant molecular crystals, which leads to new insights and understanding in terms of

structure and stabilities, as well as response properties like phonons, vibrational spectra,

and elastic moduli. The accuracy and transferability of first-principles approaches will

make them a central tool for the prediction and the engineering of molecular crystals in

the future. However, one very important aspect is the understanding that many prop-

erties of molecular crystals — including their structure — can highly depend on the

temperature. Therefore, accounting for thermal effects is important but significantly

increases the computational cost. Hence, first-principles approaches are often limited to

the harmonic approximation, which enables powerful insights but neglects any anhar-

monic effects due to the thermal expansion of the unit cell and internal motion.

The aim of this thesis was to accurately calculate relative stabilities of molecular-

crystal polymorphs and related properties at finite temperatures on a first-principles

level, which is still applicable to larger practically relevant molecular crystals. It was

shown by Reilly et al. [40] that accurate lattice energies can be obtained for a set of

small molecular crystals by using vdW-inclusive DFT. In the case of the PBE0 func-

tional paired with the MBD vdW model, the MAE w.r.t. back-corrected experimental

sublimation enthalpies amounts to less than 1 kcal/mol. Therefore, the MBD and the

related pairwise TS vdW models were used throughout this thesis.

First, we have discussed state-of-the-art modeling approaches on the example of a

simple cubic ammonia crystal. We have seen that by just considering fully optimized

structures, the experimental unit-cell volume at a temperature of 180 K is overesti-

mated by PBE and underestimated by both vdW-inclusive approaches. A very efficient

way to account for the thermal expansion of a molecular crystal is the QHA. Within

this approximation, PBE+MBD is able to capture the majority of the thermal expan-

sion, leading to an excellent description of the unit-cell volume. In contrast, utilizing

pure PBE within the QHA results in a significant overestimation of the unit cell vol-

ume, illustrating once again the crucial nature of vdW interactions for molecular-crystal

properties. Furthermore, we have shown that accounting for the thermal expansion is
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also crucial for the accurate calculation of elastic properties, such as the bulk modulus

at finite temperatures.

Next, we have discussed the modeling of low-frequency vibrational spectra for an

orthorhombic purine crystal. Also in this non-cubic case, the QHA provides an excellent

description of the unit-cell volume at room temperature. In Chapter 6, we have shown

that the QHA also significantly improves the description of vibrational frequencies in

the THz regime when compared to experimental measurements at room temperature.

However, we have so far neglected any additional anharmonic effects. Therefore, we have

estimated further anharmonicities by replacing the harmonic oscillators with Morse os-

cillators. For the considered purine crystal this approach leads to a further improvement

in terms of vibrational frequencies compared to the QHA.

The second part of this thesis dealt with the complex topic of organic CSP, which

is imperative for the development of new pharmaceuticals and crystal engineering, since

a variety of molecular-crystal properties are highly structure dependent. While first-

principles calculations cannot routinely be applied for a complete CSP procedure, ac-

curate calculations are essential for the final stability ranking. Therefore, we have de-

veloped a hierarchical CSP protocol intended for such a final stability ranking. Chapter

8 describes our contribution to the latest molecular CSP blind test organized by the

Cambridge Crystallographic Data Centre. Therein, we have hierarchically refined and

re-ranked an existing set of initial structures obtained via a quasi-random search. Our

final stabilities were calculated using PBE+MBD and in some cases also vibrational free

energies were considered. Excellent stability rankings were obtained for experimental

structures available in the initial structure set. In addition, we observed that including

vibrational free energies indeed improve the stability ranks.

Next, we have extended our CSP procedure to also include an enhanced description

of the Pauli exchange repulsion via utilization of a hybrid density functional. To further

validate our procedure, we have consistently applied it to the five blind-test systems

utilizing a significantly different set of initial structures. In Chapter 9 the used initial

structures were generated by a Monte Carlo parallel tempering algorithm and include

for two systems also challenging Z ′ = 2 structures. Our most reliable level of theory in

this recommended hierarchical computational approach (PBE0+MBD+Fvib) provides

excellent stability rankings for this very diverse set of molecular crystals. Even for the

challenging polymorphic system XXIII, all five so far known polymorphs are located

within the top 4.3 kJ/mol of our stability ranking. We stress that all considered effects

are necessary for obtaining accurate results.

Moreover, we have also calculated in Chapter 9 anharmonic free energies for a set

of XXIII structures to obtain further insight into this challenging polymorphic energy

landscape. Therefore, we have utilized the QHA and the above mentioned Morse os-

cillators to estimate anharmonic effects. This leads to an average change of relative

stabilities by 1 kJ/mol with an observed maximum of about 3 kJ/mol. This suggests

that such an analysis might be important for highly polymorphic systems but these

anharmonic effects would not lead to significant changes for an already well separated

energy landscape. Now, all five experimentally known polymorphs are energetically al-

most identical; all five structures are located with an energy window of only 1.5 kJ/mol.
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However, one structure (XXIII-N70) is by about 3 kJ/mol more stable than all experi-

mentally discovered forms and could potentially be another solid form of system XXIII.

Systematic benchmarks carried out in Chapter 10 suggest a reliability of our CSP proce-

dure to around 1-2 kJ/mol, suggesting that this so far unobserved structure N70 might

be the thermodynamically most stable form at room temperature. Therefore, an exper-

imental confirmation of this structure would be very helpful and we have made several

suggestions for crystallization experiments in Chapter 9. Our findings suggest that late-

appearing polymorphs [52] are ubiquitous for pharmaceutically relevant systems, which

further reinforces other recent predictions of new solid forms [1, 52, 60, 222, 223].

While we have shown that our hierarchical approach enables in principle the calcu-

lation of accurate thermodynamic relative stabilities for pharmaceutically relevant sys-

tems, we note that further improvements of this procedure are possible and desirable.

For example, the geometry optimizations and the harmonic vibrational free energies

could be obtained by using PBE+MBD instead of PBE+TS, which has been discussed

in Chapter 10 and applied in Chapter 11 for the five polymorphs of coumarin. In this

case, our obtained relative stabilities agree within 1 kJ/mol with the experimental mea-

surements. However, further benchmarks on other complex molecular crystals would be

helpful for the demonstration of the general applicability of this procedure. Moreover,

the accuracy of the free energy calculations could be further improved upon by employ-

ing dynamical approaches such as the vibrational self-consistent field approach [203–205]

or path-integral molecular dynamics [206].

In addition, more and more studied molecular crystals exhibit very complex polymor-

phic energy landscapes, with a large number of structures located within a narrow energy

window of only a few kJ/mol. Therefore, accurate stabilities are a prerequisite for the

better understanding of such landscapes and we hope that our presented computational

procedure will contribute to that. However, thermodynamics alone is often insufficient

for the understanding of polymorph crystallization and kinetic effects would have to be

considered as well [45, 53, 224–226]. Therefore, novel developments would be required for

the modeling of kinetic effects during the nucleation phase and the crystal growth, also

taking into account the solvent utilized in the crystallization experiment. Moreover, also

the effect of disorder should be properly taken into account, which is challenging due to

the required increase in crystallographic space complexity and supercell size [57, 60, 227].

In order to make such a CSP approach broadly applicable, it would be necessary to de-

velop more efficient but still accurate methods. For example, density-functional tight

binding approaches could be utilized for certain calculation steps [196, 228] or within

embedding schemes [229, 230]. Furthermore, PBE0+MBD energies could be utilized as

reference data for the development of efficient machine learning energy models or more

accurate tailor-made force fields. Moreover, one could also develop a machine-learning

model based on PBE+MBD Hessians obtained for a few selected polymorphs of a given

system. Finally, combining such efficient machine-learning models with more advanced

enhanced sampling techniques [57, 231] could eventually enable path-integral molecular

dynamics simulations for practically relevant molecular crystals. [185]
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Appendix A

Benchmark Calculations for Small

Molecular Crystals

This appendix presents the calculated relative stabilities for a benchmark set of small

molecular crystals discussed in Chapter 9. The corresponding PBE+TS-optimized struc-

tures are available in the Supporting Information of Ref. 185.

Table A.1: Relative energies of a benchmark set of structures with small unit cells
calculated with different methods. The benchmark set consists of the single Z = 1
structure and the top 7 Z = 2 structures after the PBE0+MBD ranking for system
XXII, and the top 4 Z = 2 structures after the PBE0+MBD ranking for system XXIV.
The energy of the most stable structure of a system after the PBE0+MBD ranking was
set to zero for all methods. The letters after the slash indicate the used basis set and
grid settings: l corresponds to the light species default settings for basis sets and grids in
FHI-aims, while t refers to the tight species default settings. The label rt indicates the
usage of the really tight grid settings together with tier-3 basis functions. All relative
energies are in kJ/mol per formula unit. The method PBE0+MBD without a label
for basis set and grid settings corresponds to the PBE0+MBD estimate introduced in
Chapter 9 and used for the stability rankings in Chapters 9, 10, and 11 [185].

Structure PBE+MBD/l PBE+MBD/t PBE+MBD/rt PBE0+MBD/l PBE0+MBD PBE0+MBD/t

XXII-N17 0.0 0.0 0.0 0.0 0.0 0.0
XXII-N32 -0.1 0.6 0.6 0.4 1.0 0.8
XXII-N36 0.6 1.3 1.3 0.9 1.6 1.6
XXII-N9 -1.3 -0.3 -0.3 0.8 1.9 1.2
XXII-N92 1.8 1.8 1.8 2.1 2.1 2.1
XXII-N24 -2.4 0.6 0.8 -0.3 2.7 2.3
XXII-N39 0.5 1.1 1.0 2.3 2.9 2.4
XXII-N44 0.9 1.5 1.5 2.5 3.1 2.5

XXIV-N53 0.0 0.0 0.0 0.0 0.0 0.0
XXIV-N6 0.2 0.9 0.8 1.1 1.7 2.0
XXIV-N19 3.1 3.4 3.4 2.5 2.8 3.5
XXIV-N12 2.0 2.2 2.2 3.2 3.4 3.4
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Appendix B

Accuracy of Optimized Structures

for the Blind-Test Systems

This appendix shows the accuracy of the calculated structures for the five blind-test

systems w.r.t. the experimentally measured crystal structures (see Chapters 9 and 10).

The corresponding optimized structures are available in the Supporting Information of

Ref. 195.

Table B.1: Errors of PBE+TS-optimized structures using light settings w.r.t. exper-
imental structures. This table shows the relative error in % for cell lengths (a, b, c),
angles (α, β, γ), cell volume, and density. In addition the RMSD20 is shown in Å [185].

Exp. str. a b c α β γ Volume Density RMSD20

XXII 0.46 0.94 2.07 0.76 2.99 -2.90 0.103
XXIII-A -1.25 -2.12 0.06 -1.42 -3.09 3.18 0.198
XXIII-B 1.13 -0.92 -3.95 4.28 0.26 -1.39 -4.53 4.71 0.277
XXIII-C -1.43 -1.24 -0.97 2.47 2.01 0.11 -3.19 3.30 0.237
XXIII-D -3.56 0.74 1.24 2.11 -3.51 3.67 0.447
XXIII-E -1.15 -3.63 -1.69 -3.05 0.93 -0.55 -4.73 4.96 0.479
XXIV 2.17 -0.99 -0.78 1.04 0.11 -0.06 0.119
XXV -0.06 -1.30 -1.61 0.72 -3.43 3.51 0.129
XXVI -1.02 -0.67 -1.95 3.30 0.73 0.86 -2.47 2.53 0.268

141



B Accuracy of Optimized Structures for the Blind-Test Systems

Table B.2: Errors of PBE+MBD-optimized structures using light settings w.r.t. ex-
perimental structures. This table shows the relative error in % for cell lengths (a, b, c),
angles (α, β, γ), cell volume, and density. In addition the RMSD20 is shown in Å [195].

Exp. str. a b c α β γ Volume Density RMSD20

XXII 1.62 0.96 2.01 1.24 3.80 -3.71 0.119
XXIII-A -1.21 -0.32 -0.03 -1.52 -1.33 1.33 0.161
XXIII-B 2.45 -0.32 -3.28 3.02 1.04 -1.53 -1.83 1.81 0.243
XXIII-C -1.57 -1.11 -0.21 2.26 1.91 1.11 -2.25 2.30 0.232
XXIII-D -2.56 1.53 1.19 2.22 -1.92 2.02 0.414
XXIII-E -0.27 -2.35 -2.02 -2.63 0.99 -0.40 -3.10 3.18 0.453
XXIV 4.69 -1.11 -1.32 0.06 2.15 -2.10 0.158
XXV 0.08 -1.03 -0.75 0.70 -2.16 2.15 0.102
XXVI -0.56 -0.21 -2.13 3.18 1.04 1.62 -1.27 1.34 0.271

Table B.3: Errors of PBE0+MBD-optimized structures using light settings w.r.t. ex-
perimental structures. This table shows the relative error in % for cell lengths (a, b, c),
angles (α, β, γ), cell volume, and density. In addition the RMSD20 is shown in Å [195].

Exp. str. a b c α β γ Volume Density RMSD20

XXII 0.22 0.18 0.64 0.62 0.63 -0.64 0.059
XXIII-A -1.98 -2.30 -0.32 -1.41 -4.34 4.52 0.181
XXIII-B 1.58 -1.78 -3.81 3.14 0.65 -1.37 -4.61 4.86 0.251
XXIII-C -2.64 -1.99 -1.20 2.54 1.88 0.50 -5.24 5.52 0.237
XXIII-D -2.34 -0.14 -0.21 1.18 -3.71 3.90 0.272
XXIII-E -1.96 -2.89 -2.57 -4.29 1.16 -0.13 -5.94 6.29 0.471
XXIV 1.68 -1.26 -1.46 0.46 -1.18 1.21 0.109
XXV -0.70 -1.57 -2.03 0.94 -4.87 5.09 0.156
XXVI -1.33 -1.45 -3.69 3.83 1.29 2.91 -4.04 4.23 0.357

Table B.4: Errors of PBE+MBD-optimized structures using tight settings w.r.t. ex-
perimental structures. This table shows the relative error in % for cell lengths (a, b, c),
angles (α, β, γ), cell volume, and density. In addition the RMSD20 is shown in Å [195].

Exp. str. a b c α β γ Volume Density RMSD20

XXII 2.48 1.21 2.53 1.66 5.15 -4.92 0.152
XXIII-A -1.16 -0.81 0.05 -1.19 -1.73 1.78 0.159
XXIII-B 1.94 -0.22 -3.21 2.04 -0.29 -1.66 -2.49 2.54 0.219
XXIII-C -1.59 -1.23 -0.45 2.12 1.69 0.80 -2.72 2.80 0.220
XXIII-D -1.90 1.37 1.00 2.44 -1.81 1.87 0.397
XXIII-E -0.66 -1.70 -2.39 -2.70 1.26 -0.36 -3.24 3.33 0.460
XXIV 4.14 -1.02 -0.98 0.26 2.01 -1.91 0.138
XXV -0.10 -1.02 -1.11 0.74 -2.71 2.72 0.116
XXVI -0.96 -0.24 -2.03 2.47 0.99 1.30 -1.87 1.93 0.225
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Table B.5: Errors of the thermally-expanded structures (corresponding to 300 K within
the QHA)calculated with PBE+TS and light settings w.r.t. experimental structures34.
This table shows the relative error in % for cell lengths (a, b, c), angles (α, β, γ), cell
volume, and density. In addition the RMSD20 is shown in Å [185].

Exp. str. a b c α β γ Volume Density RMSD20

XXIII-A -0.46 -0.73 0.28 -1.48 -0.70 0.74 0.193
XXIII-B 2.84 0.75 -3.72 3.97 1.56 -1.49 -0.76 0.72 0.293
XXIII-C -0.69 -0.75 -0.36 2.03 2.06 0.23 -1.37 1.43 0.244
XXIII-D -2.34 2.13 1.50 2.07 -0.66 0.67 0.408
XXIII-E 0.35 -2.42 -1.49 -3.16 0.56 -1.02 -1.70 1.70 0.479
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Appendix C

Stability Rankings for the Blind-Test

Systems

This appendix contains all calculated relative stabilities for the five blind-test systems

based on the GRACE initial structures (see Chapter 9). The corresponding PBE+TS-

optimized structures are available in the Supporting Information of Ref. 185.

Table C.1: Stability ranking for system XXII in kJ/mol normalized per molecule. The
energy of the most stable structure in each ranking was set to zero and the structures
are always ordered according to the highest available ranking level. The final ranking
(F ) includes PBE0+MBD lattice energies and vibrational free energies calculated at 150
K using PBE+TS. In addition, this table contains the number of molecules in the unit
cell (Z), the space group (Symm.), and the density in g/cm3 [185].

Name Z Symm. Density PBE+TS PBE+MBD PBE0+MBD F

XXII-N2 (Exp.) 4 P 21/n 1.677 1.7 0.7 0.0 0.0

XXII-N3 4 P 21/c 1.672 1.7 0.6 0.6 0.5

XXII-N4 4 P 21/c 1.688 2.5 1.2 1.0 1.9

XXII-N1 4 P n a 21 1.715 0.0 0.0 1.8 2.5

XXII-N19 4 P 21/n 1.669 5.2 4.1 3.9 4.1

XXII-N6 4 P 21/n 1.701 3.7 2.4 3.7 4.4

XXII-N7 4 P 21 21 21 1.703 2.8 1.9 4.3 4.8

XXII-N17 2 P 21 1.639 7.3 4.4 4.4 n/d

XXII-N27 4 P 21 21 21 1.668 6.1 5.1 4.5 n/d

XXII-N20 4 P n a 21 1.634 7.6 4.1 4.5 n/d

XXII-N35 4 P 21/n 1.673 6.3 4.6 4.8 n/d

XXII-N5 8 I 2/c 1.728 2.8 3.2 5.1 n/d

XXII-N8 4 P 21/c 1.709 4.0 3.8 5.2 n/d

XXII-N37 4 P 21/c 1.659 6.9 5.3 5.3 n/d

XXII-N32 2 P -1 1.659 7.2 4.9 5.4 n/d

XXII-N46 4 P 21/c 1.657 7.4 5.3 5.4 n/d

XXII-N13 4 P n m a 1.712 4.2 4.0 5.5 n/d
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C Stability Rankings for the Blind-Test Systems

Table C.1: (continued) Stability ranking for system XXII.

Name Z Symm. Density PBE+TS PBE+MBD PBE0+MBD F

XXII-N22 4 P 21/c 1.609 7.8 3.9 5.6 n/d

XXII-N67 4 P 21/n 1.626 8.8 5.2 5.7 n/d

XXII-N52 4 P 21/c 1.663 6.8 5.5 5.9 n/d

XXII-N36 2 P -1 1.669 6.7 5.7 6.0 n/d

XXII-N42 4 P 21/n 1.659 6.9 5.3 6.0 n/d

XXII-N11 4 P n m a 1.712 4.0 3.8 6.1 n/d

XXII-N70 8 P b c a 1.607 8.0 6.0 6.2 n/d

XXII-N9 2 P -1 1.705 5.0 4.1 6.3 n/d

XXII-N34 4 P 21 21 21 1.660 7.6 5.3 6.3 n/d

XXII-N21 4 P 21/n 1.721 4.3 5.0 6.4 n/d

XXII-N18 4 P 21 21 21 1.664 7.4 4.4 6.4 n/d

XXII-N41 8 P b c a 1.684 6.4 5.6 6.5 n/d

XXII-N92 2 P 21 1.666 7.8 6.2 6.5 n/d

XXII-N53 4 P 21/c 1.661 8.0 5.9 6.6 n/d

XXII-N76 4 P -1 1.730 4.5 5.1 6.7 n/d

XXII-N16 4 P 21/n 1.708 4.6 4.6 6.7 n/d

XXII-N30 8 P 21/n 1.729 2.9 4.6 6.9 n/d

XXII-N10 4 P 21/n 1.727 3.1 3.7 6.9 n/d

XXII-N85 4 P 21/c 1.649 7.7 6.7 6.9 n/d

XXII-N26 4 P 21/n 1.657 7.2 5.0 7.0 n/d

XXII-N29 4 P 21/c 1.684 6.1 5.4 7.0 n/d

XXII-N47 4 P 21/c 1.664 7.3 6.3 7.0 n/d

XXII-N88 4 P c a 21 1.729 3.9 5.1 7.1 n/d

XXII-N24 2 P c 1.746 2.6 4.9 7.1 n/d

XXII-N25 4 P 21/c 1.724 3.2 5.7 7.2 n/d

XXII-N43 4 P 21/c 1.670 6.4 5.5 7.2 n/d

XXII-N58 4 P 21 21 21 1.696 5.8 6.0 7.3 n/d

XXII-N39 2 P 21/m 1.718 5.2 5.5 7.3 n/d

XXII-N83 2 P -1 1.614 8.6 6.5 7.3 n/d

XXII-N73 4 P 21/c 1.670 8.0 6.5 7.3 n/d

XXII-N12 4 P 21/c 1.706 4.8 4.9 7.4 n/d

XXII-N62 4 P 21/c 1.635 8.4 5.8 7.4 n/d

XXII-N44 1 P 1 1.730 5.8 5.8 7.5 n/d

XXII-N15 4 P 21/n 1.654 6.9 4.7 7.5 n/d

XXII-N40 4 P c a 21 1.744 4.0 5.7 7.6 n/d

XXII-N23 2 P m n 21 1.689 5.6 4.7 7.6 n/d

XXII-N33 4 P 21/n 1.698 5.5 6.0 7.7 n/d

XXII-N64 2 P 21 1.685 7.5 6.4 7.7 n/d

XXII-N31 8 P b c a 1.701 6.1 5.4 7.9 n/d

XXII-N86 4 P 21/n 1.698 6.2 6.7 8.1 n/d
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Table C.1: (continued) Stability ranking for system XXII.

Name Z Symm. Density PBE+TS PBE+MBD PBE0+MBD F

XXII-N93 4 P c a 21 1.607 10.8 6.7 8.2 n/d

XXII-N48 4 P 21/c 1.701 6.2 5.5 8.2 n/d

XXII-N77 4 P 21/c 1.715 5.6 6.1 8.2 n/d

XXII-N28 4 P 21/n 1.689 6.3 5.1 8.2 n/d

XXII-N65 4 P 21/c 1.693 5.8 5.6 8.3 n/d

XXII-N84 8 C 2/c 1.668 8.4 7.1 8.3 n/d

XXII-N97 2 P -1 1.702 6.2 5.8 8.3 n/d

XXII-N66 4 P n a 21 1.620 10.6 5.7 8.3 n/d

XXII-N63 4 P 21 21 21 1.717 4.3 6.8 8.3 n/d

XXII-N45 8 P b c a 1.719 5.2 6.4 8.4 n/d

XXII-N55 4 P 21/c 1.664 7.6 6.8 8.4 n/d

XXII-N82 4 P 21/n 1.626 10.0 6.3 8.5 n/d

XXII-N71 4 P 21/n 1.708 5.4 6.5 8.6 n/d

XXII-N74 4 P 21/n 1.725 4.6 6.3 8.6 n/d

XXII-N57 4 P n m a 1.696 6.3 5.8 8.7 n/d

XXII-N61 4 P 21/c 1.717 6.8 6.3 8.7 n/d

XXII-N59 4 P 21/n 1.695 7.2 7.2 8.9 n/d

XXII-N69 2 P -1 1.752 4.9 7.7 9.0 n/d

XXII-N78 2 P 21 1.716 4.8 7.3 9.1 n/d

XXII-N72 4 P 21/c 1.723 5.0 7.5 9.2 n/d

XXII-N100 8 I 2/c 1.711 5.9 7.0 9.2 n/d

XXII-N51 4 P 21/c 1.689 7.6 6.6 9.4 n/d

XXII-N79 4 P 21/c 1.710 6.4 8.1 9.5 n/d

XXII-N87 4 P n a 21 1.718 6.1 7.9 9.6 n/d

XXII-N54 4 P 21/c 1.702 6.2 6.7 9.7 n/d

XXII-N89 2 P -1 1.662 7.3 6.7 9.7 n/d

XXII-N90 4 P 21/c 1.671 8.1 6.9 9.7 n/d

XXII-N81 4 P 21/c 1.691 7.7 7.5 10.0 n/d

XXII-N99 4 P -1 1.691 7.4 7.4 10.0 n/d

XXII-N75 8 P b c a 1.703 6.6 7.3 10.1 n/d

XXII-N80 4 P 21/c 1.705 6.9 7.3 10.1 n/d

XXII-N91 2 P -1 1.710 7.6 7.5 10.2 n/d

XXII-N95 4 P 21/c 1.687 7.4 7.4 10.2 n/d

XXII-N68 4 P 21/n 1.719 5.8 7.6 10.3 n/d

XXII-N96 4 P 21 21 21 1.639 9.0 6.7 10.6 n/d

XXII-N94 4 P 21/c 1.671 8.9 7.5 10.7 n/d

XXII-N98 4 P 21/c 1.665 8.6 7.2 10.7 n/d
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C Stability Rankings for the Blind-Test Systems

Table C.2: Stability ranking for system XXIII in kJ/mol normalized per molecule. The
energy of the most stable structure in each ranking was set to zero and the structures
are always ordered according to the highest available ranking level. The final ranking
(F ) includes PBE0+MBD lattice energies and vibrational free energies calculated at
300 K using PBE+TS. In addition, this table contains the number of molecules in the
asymmetric unit (Z ′), the number of molecules in the unit cell (Z), the space group
(Symm.), and the density in g/cm3 [185].

Name Z ′ Z Symm. Density PBE+TS PBE+MBD PBE0+MBD F

XXIII-N70 1 4 P 21/n 1.388 11.1 3.4 4.0 0.0

XXIII-N5 2 4 P -1 1.440 6.9 0.7 0.1 1.4

XXIII-E (E) 2 4 P -1 1.418 9.4 2.7 3.2 1.4

XXIII-N6 (C) 2 4 P -1 1.440 6.9 0.7 0.1 1.5

XXIII-N31 1 2 P -1 1.424 6.4 2.7 3.9 2.1

XXIII-N18 1 2 P -1 1.454 6.7 0.5 0.0 2.2

XXIII-N2 2 4 P -1 1.434 4.4 0.0 2.1 2.2

XXIII-N4 (B) 1 2 P -1 1.445 4.6 2.0 1.5 2.5

XXIII-N42 1 2 P -1 1.433 6.0 1.3 1.8 3.0

XXIII-N22 2 4 P -1 1.454 4.6 2.9 3.1 3.5

XXIII-N1 2 8 P 21/n 1.425 11.3 2.6 4.4 3.5

XXIII-N13 2 8 P 21/n 1.415 12.8 3.2 4.7 3.6

XXIII-N100 1 4 P 21/n 1.449 10.5 4.0 3.9 3.7

XXIII-N7 2 4 P -1 1.436 6.4 1.9 2.5 3.8

XXIII-N68 1 4 P 21/n 1.423 7.2 2.0 2.6 3.9

XXIII-N85 (A) 1 4 P 21/c 1.394 9.0 4.6 5.3 4.1

XXIII-N3 1 8 I 2/a 1.440 1.3 1.5 2.7 4.1

XXIII-N39 (D) 1 4 P 21/n 1.384 11.1 4.9 6.7 4.3

XXIII-N53 1 2 P -1 1.415 7.5 4.5 5.1 4.4

XXIII-N28 1 2 P -1 1.430 1.8 2.5 3.5 4.4

XXIII-N33 2 4 P -1 1.433 7.8 4.7 4.5 4.5

XXIII-N10 2 8 P 21/n 1.431 9.6 2.3 3.8 4.6

XXIII-N26 2 8 P 21/c 1.427 8.0 3.7 4.0 4.8

XXIII-N8 2 8 P 21/n 1.425 10.2 2.4 4.2 5.0

XXIII-N46 2 4 P -1 1.440 6.6 3.9 4.7 5.0

XXIII-N38 1 4 P 21/c 1.390 11.6 2.0 4.7 5.1

XXIII-N30 2 4 P -1 1.442 9.2 3.3 3.7 5.2

XXIII-N25 2 4 P -1 1.442 8.9 3.2 3.6 5.3

XXIII-N20 2 8 P 21/c 1.437 1.7 2.8 4.3 5.5

XXIII-N52 2 4 P -1 1.449 7.8 5.0 5.0 5.6

XXIII-N80 1 4 P 21/c 1.411 11.0 5.3 5.2 5.6

XXIII-N23 2 8 P n a 21 1.438 1.8 3.0 4.6 5.8

XXIII-N24 2 8 P 21/c 1.424 6.4 2.4 4.8 6.1

XXIII-N95 1 2 P -1 1.404 10.4 6.3 7.1 7.0

XXIII-N37 1 4 P 21/c 1.459 2.0 3.0 6.6 7.6
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Table C.2: (continued) Stability ranking for system XXIII.

Name Z ′ Z Symm. Density PBE+TS PBE+MBD PBE0+MBD F

XXIII-N41 1 4 P 21/c 1.425 8.8 4.5 7.2 8.0

XXIII-N56 1 2 P -1 1.448 7.7 4.3 5.1 9.0

XXIII-N49 1 2 P -1 1.414 10.0 3.7 5.8 9.2

XXIII-N91 1 2 P -1 1.414 8.7 6.0 7.2 9.2

XXIII-N43 1 4 P 21/n 1.451 8.6 5.8 6.4 9.3

XXIII-N66 1 2 P -1 1.465 0.0 3.8 7.2 9.8

XXIII-N62 1 4 P 21/c 1.406 8.8 5.0 7.2 10.3

XXIII-N88 1 4 P 21/c 1.440 6.4 6.7 8.7 10.9

XXIII-N48 1 4 P 21/c 1.411 8.1 5.8 8.0 11.4

XXIII-N61 1 4 P 21/c 1.459 7.7 5.1 7.5 11.9

XXIII-N81 1 4 P 21/c 1.443 5.9 5.0 8.4 12.5

XXIII-N35 2 16 C 2/c 1.459 6.5 4.5 4.5 n/d

XXIII-N76 2 16 C 2/c 1.421 3.0 3.4 4.8 n/d

XXIII-N47 2 4 P -1 1.445 7.9 5.0 5.0 n/d

XXIII-N21 2 8 P 21/n 1.416 13.0 3.8 5.0 n/d

XXIII-N83 2 4 P 21 1.425 6.1 5.3 5.1 n/d

XXIII-N40 2 4 P -1 1.431 8.6 4.2 5.2 n/d

XXIII-N60 2 4 P -1 1.446 8.0 5.2 5.2 n/d

XXIII-N59 2 4 P -1 1.447 7.9 5.2 5.2 n/d

XXIII-N27 2 16 C 2/c 1.435 3.0 3.3 5.2 n/d

XXIII-N57 2 4 P -1 1.447 7.8 5.1 5.2 n/d

XXIII-N54 2 16 C 2/c 1.450 7.0 5.0 5.3 n/d

XXIII-N63 2 4 P -1 1.433 8.7 5.4 5.4 n/d

XXIII-N36 2 4 P -1 1.428 9.4 5.2 5.4 n/d

XXIII-N32 2 8 P 21/c 1.440 10.0 4.2 5.6 n/d

XXIII-N64 2 8 P 21/c 1.437 4.0 4.6 5.6 n/d

XXIII-N29 2 8 P 21/c 1.429 12.0 4.3 5.9 n/d

XXIII-N71 2 4 P -1 1.447 7.9 4.5 5.9 n/d

XXIII-N73 2 16 I 2/c 1.445 7.4 5.5 6.0 n/d

XXIII-N97 2 4 P -1 1.410 10.3 5.7 6.1 n/d

XXIII-N67 2 4 P -1 1.420 9.0 5.8 6.2 n/d

XXIII-N90 2 4 P -1 1.437 7.5 5.7 6.2 n/d

XXIII-N77 2 4 P -1 1.452 7.4 4.5 6.3 n/d

XXIII-N45 2 16 I 2/c 1.424 5.6 4.3 6.3 n/d

XXIII-N65 2 4 P -1 1.422 8.9 5.8 6.3 n/d

XXIII-N86 2 8 C c 1.432 7.6 5.3 6.3 n/d

XXIII-N89 2 4 P -1 1.450 8.7 4.9 6.4 n/d

XXIII-N87 4 16 P 2/c 1.449 8.3 6.3 6.5 n/d

XXIII-N84 2 8 P 21/c 1.452 2.0 3.9 6.5 n/d

XXIII-N82 2 8 C c 1.424 7.3 5.4 6.6 n/d
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C Stability Rankings for the Blind-Test Systems

Table C.2: (continued) Stability ranking for system XXIII.

Name Z ′ Z Symm. Density PBE+TS PBE+MBD PBE0+MBD F

XXIII-N44 2 4 P -1 1.431 11.0 4.8 6.6 n/d

XXIII-N55 2 8 P 21/c 1.409 6.7 5.0 6.6 n/d

XXIII-N34 2 16 I 2/c 1.420 4.6 4.3 6.7 n/d

XXIII-N69 2 4 P -1 1.436 8.9 5.2 7.0 n/d

XXIII-N96 2 4 P -1 1.446 9.2 5.0 7.1 n/d

XXIII-N98 2 4 P -1 1.432 9.2 5.5 7.2 n/d

XXIII-N58 2 8 P 21/c 1.403 11.9 5.0 7.3 n/d

XXIII-N93 2 4 P -1 1.445 8.0 5.8 7.3 n/d

XXIII-N51 2 4 P -1 1.422 13.8 5.9 7.5 n/d

XXIII-N99 2 16 I 2/a 1.440 4.4 6.0 7.6 n/d

XXIII-N72 2 4 P -1 1.419 11.8 5.6 7.9 n/d

XXIII-N75 2 4 P -1 1.419 12.0 5.8 7.9 n/d

XXIII-N79 2 8 P 21/n 1.410 14.9 6.5 8.3 n/d

XXIII-N74 2 4 P -1 1.438 12.0 6.7 8.4 n/d

XXIII-N94 2 4 P -1 1.442 10.2 7.0 8.5 n/d
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Table C.3: Stability ranking for system XXIV in kJ/mol normalized per formula unit.
The energy of the most stable structure in each ranking was set to zero and the structures
are always ordered according to the highest available ranking level. The final ranking
(F ) includes PBE0+MBD lattice energies and vibrational free energies calculated at 240
K using PBE+TS. In addition, this table contains the number of molecules in the unit
cell (Z), the space group (Symm.), and the density in g/cm3 [185].

Name Z Symm. Density PBE+TS PBE+MBD PBE0+MBD F

XXIV-N2 (Exp.) 4 P 21/c 1.570 0.3 1.5 0.4 0.0

XXIV-N3 4 P 21/c 1.543 1.2 0.5 0.0 0.3

XXIV-N10 8 C 2/c 1.521 4.1 2.0 2.4 1.1

XXIV-N53 2 P -1 1.566 0.0 0.8 0.8 1.3

XXIV-N7 4 P 21/n 1.549 2.3 1.4 2.7 1.4

XXIV-N4 4 P 21/c 1.551 1.4 2.1 1.3 1.5

XXIV-N6 2 P -1 1.535 2.9 1.7 2.6 1.9

XXIV-N1 4 P 21 21 21 1.534 1.2 0.0 2.6 3.1

XXIV-N8 4 P 21/n 1.561 3.4 3.6 3.3 n/d

XXIV-N9 8 C 2/c 1.571 2.8 3.9 3.5 n/d

XXIV-N19 2 P -1 1.556 4.6 4.2 3.6 n/d

XXIV-N12 2 P -1 1.541 3.9 3.1 4.2 n/d

XXIV-N16 4 P 21/c 1.502 5.0 3.0 5.2 n/d

XXIV-N21 8 I 2/a 1.535 4.6 4.7 5.2 n/d

XXIV-N18 8 P c c n 1.507 4.9 4.1 5.5 n/d

XXIV-N33 4 P 21/c 1.571 5.6 5.7 5.7 n/d

XXIV-N22 8 I 2/c 1.505 5.8 4.8 5.8 n/d

XXIV-N43 4 P 21/c 1.580 7.4 6.8 6.2 n/d

XXIV-N11 4 P 21/c 1.479 6.0 3.3 6.2 n/d

XXIV-N23 2 P -1 1.556 5.4 5.2 6.3 n/d

XXIV-N40 8 P b c n 1.506 7.1 6.0 6.6 n/d

XXIV-N30 4 P 21/n 1.527 7.2 5.5 6.6 n/d

XXIV-N31 8 I b a 2 1.505 6.7 5.6 6.8 n/d

XXIV-N29 2 P -1 1.506 9.0 6.3 6.8 n/d

XXIV-N27 4 P 21/n 1.572 6.6 7.7 6.8 n/d

XXIV-N45 4 P 21/c 1.543 7.8 7.5 7.2 n/d

XXIV-N5 8 P b c a 1.522 4.6 4.3 7.2 n/d

XXIV-N63 4 P 21/c 1.527 9.8 8.1 7.4 n/d

XXIV-N14 4 P 21 21 21 1.523 7.2 4.7 7.4 n/d

XXIV-N13 4 P 21 21 21 1.518 6.8 4.2 7.4 n/d

XXIV-N44 8 C 2/c 1.549 8.0 7.5 7.5 n/d

XXIV-N50 8 P b c n 1.524 7.5 7.2 7.7 n/d

XXIV-N32 8 C 2/c 1.428 8.4 4.9 7.7 n/d

XXIV-N34 4 P 21/c 1.456 8.0 5.3 7.9 n/d

XXIV-N55 4 P 21 21 21 1.548 9.1 8.9 7.9 n/d

XXIV-N17 8 P b c n 1.602 6.5 6.6 8.1 n/d
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Table C.3: (continued) Stability ranking for system XXIV.

Name Z Symm. Density PBE+TS PBE+MBD PBE0+MBD F

XXIV-N24 4 P 21/n 1.536 7.9 6.7 8.2 n/d

XXIV-N58 4 P 21/n 1.538 6.6 7.7 8.2 n/d

XXIV-N78 2 P -1 1.549 8.3 8.9 8.3 n/d

XXIV-N20 4 P n a 21 1.500 7.7 4.6 8.3 n/d

XXIV-N65 4 P 21/n 1.484 11.9 8.0 8.3 n/d

XXIV-N52 4 P 21/c 1.461 10.5 7.5 8.4 n/d

XXIV-N49 8 C 2/c 1.559 7.0 8.3 8.5 n/d

XXIV-N67 4 P -1 1.483 7.7 5.4 8.6 n/d

XXIV-N36 8 P c c n 1.513 8.3 7.2 8.7 n/d

XXIV-N62 8 P c c n 1.419 11.5 6.9 8.7 n/d

XXIV-N39 2 P -1 1.502 7.7 6.0 8.7 n/d

XXIV-N73 4 P 21/c 1.532 9.2 8.2 8.9 n/d

XXIV-N42 2 P -1 1.513 9.5 8.3 9.2 n/d

XXIV-N35 2 P -1 1.473 8.1 6.6 9.2 n/d

XXIV-N54 4 P 21/n 1.463 10.3 6.6 9.2 n/d

XXIV-N37 4 P 21/c 1.479 7.9 5.8 9.3 n/d

XXIV-N47 4 P 21/c 1.466 9.5 6.2 9.5 n/d

XXIV-N25 4 P 21 21 21 1.545 8.5 7.1 10.0 n/d

XXIV-N51 16 F d d 2 1.563 9.5 8.8 10.1 n/d

XXIV-N92 8 C c 1.537 9.3 7.5 10.3 n/d

XXIV-N85 4 P 21 21 21 1.550 9.9 9.9 10.3 n/d

XXIV-N64 4 P 21/c 1.519 11.6 9.3 10.3 n/d

XXIV-N60 2 P -1 1.449 11.7 8.1 10.5 n/d

XXIV-N70 16 F d d 2 1.479 10.2 9.2 10.6 n/d

XXIV-N66 2 P 21 1.555 9.0 9.2 10.8 n/d

XXIV-N90 4 P c a 21 1.472 11.4 8.1 10.8 n/d

XXIV-N94 8 P c c n 1.527 10.6 9.5 11.1 n/d

XXIV-N88 16 F d d 2 1.595 10.0 11.2 11.1 n/d

XXIV-N87 2 P -1 1.473 10.1 8.5 11.1 n/d

XXIV-N48 4 P 21/n 1.417 12.5 7.2 11.2 n/d

XXIV-N84 8 I 2/c 1.514 12.7 9.1 11.2 n/d

XXIV-N91 4 P 21/c 1.427 12.7 8.6 11.4 n/d

XXIV-N59 4 P 21 21 21 1.481 11.5 7.0 11.4 n/d

XXIV-N74 4 P 21/c 1.490 10.6 8.1 11.5 n/d

XXIV-N81 4 P 21/c 1.504 13.0 9.9 11.5 n/d

XXIV-N89 4 P 21/n 1.491 11.2 9.5 11.5 n/d

XXIV-N99 8 P c c n 1.522 10.0 10.2 11.7 n/d

XXIV-N97 4 P 21/c 1.551 11.9 11.0 11.9 n/d

XXIV-N77 4 P 21/c 1.498 11.3 9.7 11.9 n/d

XXIV-N61 2 P -1 1.494 10.1 8.6 12.0 n/d
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Table C.3: (continued) Stability ranking for system XXIV.

Name Z Symm. Density PBE+TS PBE+MBD PBE0+MBD F

XXIV-N75 4 P 21/c 1.508 11.7 9.6 12.1 n/d

XXIV-N95 4 P 21/c 1.486 10.7 9.6 12.1 n/d

XXIV-N93 4 P 21/n 1.532 12.9 12.1 12.2 n/d

XXIV-N69 4 P n a 21 1.480 13.0 8.7 12.4 n/d

XXIV-N100 4 P 21/n 1.548 13.7 13.0 12.4 n/d

XXIV-N82 4 P 21 21 21 1.508 12.4 9.7 12.7 n/d

XXIV-N96 4 P 21 21 21 1.473 11.8 9.4 12.7 n/d

XXIV-N68 4 P 21/n 1.501 11.6 8.9 12.7 n/d

XXIV-N86 16 F d d 2 1.531 11.9 10.2 12.8 n/d

XXIV-N76 2 P 21 1.415 13.9 8.7 12.8 n/d

XXIV-N71 4 P 21/c 1.344 13.9 7.4 13.0 n/d

XXIV-N80 8 I 2/c 1.446 11.2 8.2 13.1 n/d

XXIV-N83 4 P 21/c 1.469 13.2 9.7 13.7 n/d

XXIV-N79 4 P 21/n 1.461 12.2 9.4 14.4 n/d

XXIV-N38 4 P 21/c 1.419 12.6 7.8 14.9 n/d

XXIV-N46 4 P n a 21 1.417 13.1 8.3 15.2 n/d
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Table C.4: Stability ranking for system XXV in kJ/mol normalized per formula unit.
The energy of the most stable structure in each ranking was set to zero and the structures
are always ordered according to the highest available ranking level. The final ranking
(F ) includes PBE0+MBD lattice energies and vibrational free energies calculated at 300
K using PBE+TS. In addition, this table contains the number of molecules in the unit
cell (Z), the space group (Symm.), and the density in g/cm3 [185].

Name Z Symm. Density PBE+TS PBE+MBD PBE0+MBD F

XXV-N6 (Exp.) 4 P 21/c 1.445 0.5 2.3 0.0 0.0

XXV-N5 8 P 21/c 1.431 0.0 0.0 1.0 3.8

XXV-N11 4 P 2/c 1.411 11.9 3.6 2.5 5.7

XXV-N1 2 P -1 1.453 4.4 3.2 4.2 7.0

XXV-N12 8 P b c n 1.397 13.8 5.1 4.2 n/d

XXV-N15 8 P b c n 1.409 13.3 4.4 4.3 n/d

XXV-N18 4 P c a 21 1.393 14.4 5.3 4.6 n/d

XXV-N22 2 P -1 1.431 7.0 6.7 4.7 n/d

XXV-N3 2 P -1 1.444 5.5 4.3 4.8 n/d

XXV-N16 4 P 21/c 1.422 4.0 3.9 5.1 n/d

XXV-N4 2 P -1 1.417 6.7 5.4 5.7 n/d

XXV-N2 4 P 21/n 1.437 7.6 3.8 6.0 n/d

XXV-N33 8 P b c n 1.407 14.1 7.4 6.1 n/d

XXV-N10 4 P 21/c 1.399 12.5 5.8 6.3 n/d

XXV-N29 4 P -1 1.425 10.9 8.3 6.8 n/d

XXV-N28 2 P -1 1.435 7.6 8.3 7.1 n/d

XXV-N19 4 P 21/c 1.417 13.3 8.5 7.1 n/d

XXV-N7 4 P 21/n 1.430 9.2 5.4 7.1 n/d

XXV-N36 8 P b c a 1.387 17.1 8.6 7.6 n/d

XXV-N25 4 P 21/n 1.404 11.3 6.9 7.8 n/d

XXV-N13 4 P 21/n 1.413 10.8 5.7 7.9 n/d

XXV-N27 8 I 2/c 1.419 14.5 8.8 8.2 n/d

XXV-N48 4 P 21/n 1.409 11.7 7.9 8.6 n/d

XXV-N26 2 P -1 1.418 12.6 7.9 8.7 n/d

XXV-N23 4 P 21/c 1.433 10.7 8.4 9.0 n/d

XXV-N9 4 P 21/c 1.433 10.6 7.8 9.1 n/d

XXV-N42 4 P 21/n 1.424 12.6 9.6 9.2 n/d

XXV-N20 8 P b c n 1.404 12.9 8.6 9.3 n/d

XXV-N49 2 P -1 1.401 11.0 9.7 9.6 n/d

XXV-N39 16 F d d 2 1.392 15.4 9.6 9.9 n/d

XXV-N30 4 P 21/c 1.411 18.0 9.7 9.9 n/d

XXV-N38 4 P 21/c 1.370 17.2 9.0 9.9 n/d

XXV-N32 2 P -1 1.408 15.3 9.2 10.2 n/d

XXV-N17 16 F d d 2 1.391 14.6 7.8 10.6 n/d

XXV-N44 4 P 21/c 1.395 16.2 9.4 10.9 n/d

XXV-N65 4 P 21/n 1.424 17.3 9.9 n/d n/d
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Table C.4: (continued) Stability ranking for system XXV.

Name Z Symm. Density PBE+TS PBE+MBD PBE0+MBD F

XXV-N24 4 P 21/c 1.395 14.6 10.0 n/d n/d

XXV-N66 4 P 21/c 1.396 16.3 10.7 n/d n/d

XXV-N60 8 A b a 2 1.427 11.6 10.8 n/d n/d

XXV-N50 4 P 21/n 1.428 14.7 10.8 n/d n/d

XXV-N45 1 P 1 1.387 18.7 11.1 n/d n/d

XXV-N47 2 P -1 1.423 13.8 11.6 n/d n/d

XXV-N59 8 P b c a 1.422 17.4 11.9 n/d n/d

XXV-N43 4 P 21/c 1.417 19.6 11.9 n/d n/d

XXV-N100 4 P 21/c 1.397 18.5 11.9 n/d n/d

XXV-N71 4 P 21/c 1.418 18.4 12.0 n/d n/d

XXV-N70 4 C c 1.410 14.7 12.0 n/d n/d

XXV-N77 4 P 21/c 1.383 22.4 12.2 n/d n/d

XXV-N61 4 P 21/n 1.409 16.1 12.3 n/d n/d

XXV-N62 4 P 21/c 1.409 18.1 12.4 n/d n/d

XXV-N40 4 P n a 21 1.437 15.0 12.5 n/d n/d

XXV-N79 2 P -1 1.424 19.1 12.6 n/d n/d

XXV-N55 16 I 41/a 1.396 18.2 12.6 n/d n/d

XXV-N80 16 F d d 2 1.383 17.3 12.7 n/d n/d

XXV-N57 8 P b c a 1.409 17.8 12.8 n/d n/d

XXV-N52 8 P b c a 1.419 18.4 12.9 n/d n/d

XXV-N53 2 P -1 1.437 14.0 13.0 n/d n/d

XXV-N68 2 P n 1.377 20.6 13.0 n/d n/d

XXV-N83 4 P 21/c 1.378 21.5 13.0 n/d n/d

XXV-N81 2 P 21 1.415 15.0 13.0 n/d n/d

XXV-N41 4 P 21/c 1.381 16.9 13.2 n/d n/d

XXV-N64 4 P 21/c 1.408 18.7 13.2 n/d n/d

XXV-N86 4 P 21 21 21 1.401 17.8 13.3 n/d n/d

XXV-N58 4 P 21/c 1.423 17.3 13.4 n/d n/d

XXV-N69 2 P -1 1.399 20.6 13.7 n/d n/d

XXV-N73 2 P 21 1.427 19.7 13.8 n/d n/d

XXV-N87 2 P -1 1.425 18.2 13.9 n/d n/d

XXV-N84 8 I 2/a 1.363 27.3 13.9 n/d n/d

XXV-N72 8 I 2/c 1.407 18.3 13.9 n/d n/d

XXV-N78 4 P 21/c 1.379 21.3 13.9 n/d n/d

XXV-N46 4 P 21/n 1.423 15.8 14.1 n/d n/d

XXV-N89 4 P 21/c 1.420 15.0 14.3 n/d n/d

XXV-N56 8 I 2/c 1.379 21.1 14.4 n/d n/d

XXV-N63 2 P -1 1.416 19.2 14.5 n/d n/d

XXV-N82 2 P -1 1.408 21.2 14.5 n/d n/d

XXV-N74 4 P 21/c 1.404 18.9 14.7 n/d n/d
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Table C.4: (continued) Stability ranking for system XXV.

Name Z Symm. Density PBE+TS PBE+MBD PBE0+MBD F

XXV-N75 4 P 21/n 1.398 19.1 15.1 n/d n/d

XXV-N85 8 I 2/c 1.429 16.3 15.2 n/d n/d

XXV-N90 4 P n a 21 1.412 19.1 15.6 n/d n/d

XXV-N91 4 P 21/c 1.383 20.7 15.7 n/d n/d

XXV-N54 8 P b c a 1.407 18.9 16.1 n/d n/d

XXV-N92 8 C 2/c 1.383 22.1 16.1 n/d n/d

XXV-N88 8 P b c a 1.410 21.3 16.2 n/d n/d

XXV-N94 8 C 2/c 1.387 23.8 16.6 n/d n/d

XXV-N97 4 P 21/n 1.360 25.7 16.8 n/d n/d

XXV-N95 2 P -1 1.395 27.7 17.0 n/d n/d

XXV-N93 8 I 2/a 1.401 21.4 17.1 n/d n/d

XXV-N96 4 P 21/n 1.387 19.2 17.2 n/d n/d

XXV-N99 2 P -1 1.387 21.5 17.4 n/d n/d

XXV-N76 4 P c a 21 1.401 22.4 17.5 n/d n/d

XXV-N98 2 P -1 1.426 20.4 20.5 n/d n/d
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Table C.5: Stability ranking for system XXVI in kJ/mol normalized per molecule. The
energy of the most stable structure in each ranking was set to zero and the structures
are always ordered according to the highest available ranking level. The final ranking
(F ) includes PBE0+MBD lattice energies and vibrational free energies calculated at 300
K using PBE+TS. In addition, this table contains the number of molecules in the unit
cell (Z), the space group (Symm.), and the density in g/cm3 [185].

Name Z Symm. Density PBE+TS PBE+MBD PBE0+MBD F

XXVI-N1 (Exp.) 2 P -1 1.380 6.1 0.0 0.0 0.0

XXVI-N5 8 P 21/c 1.392 4.7 1.7 1.6 0.2

XXVI-N4 2 P -1 1.377 7.2 1.4 1.1 0.3

XXVI-N9 4 P 21/n 1.410 0.0 0.6 1.2 2.0

XXVI-N6 8 P 21/c 1.407 1.6 2.0 2.5 3.0

XXVI-N3 4 P -1 1.391 6.3 2.6 2.7 3.3

XXVI-N25 2 P -1 1.388 8.0 3.4 2.6 3.4

XXVI-N11 4 P -1 1.403 2.0 2.5 2.7 3.6

XXVI-N17 4 P -1 1.419 4.5 3.7 3.3 n/d

XXVI-N10 4 P -1 1.394 4.6 3.2 3.6 n/d

XXVI-N15 4 P -1 1.417 4.5 3.8 3.7 n/d

XXVI-N99 8 P 21/c 1.390 6.5 3.6 3.8 n/d

XXVI-N23 4 P -1 1.422 4.1 3.9 4.0 n/d

XXVI-N12 4 P 21 1.402 3.1 3.2 4.1 n/d

XXVI-N13 4 P -1 1.381 8.1 3.6 4.4 n/d

XXVI-N8 4 P -1 1.390 7.7 3.7 4.5 n/d

XXVI-N22 4 P -1 1.434 4.1 4.3 4.6 n/d

XXVI-N34 4 P -1 1.381 9.9 4.1 5.0 n/d

XXVI-N19 4 P -1 1.400 7.3 4.1 5.3 n/d

XXVI-N24 8 C c 1.390 8.5 4.0 5.3 n/d

XXVI-N42 4 P -1 1.376 10.4 4.5 5.6 n/d

XXVI-N28 4 P -1 1.374 9.8 4.4 5.9 n/d

XXVI-N40 4 P -1 1.380 9.5 4.6 n/d n/d

XXVI-N18 4 P -1 1.390 7.9 4.6 n/d n/d

XXVI-N48 4 P -1 1.414 6.1 4.8 n/d n/d

XXVI-N63 4 P -1 1.397 8.2 4.9 n/d n/d

XXVI-N33 4 P -1 1.376 9.4 4.9 n/d n/d

XXVI-N32 4 P -1 1.379 9.6 4.9 n/d n/d

XXVI-N38 4 P -1 1.414 5.9 5.0 n/d n/d

XXVI-N41 4 P -1 1.378 9.4 5.0 n/d n/d

XXVI-N26 4 P -1 1.426 4.4 5.0 n/d n/d

XXVI-N72 4 P -1 1.382 9.3 5.0 n/d n/d

XXVI-N20 16 C 2/c 1.381 9.3 5.1 n/d n/d

XXVI-N27 4 P -1 1.420 4.6 5.1 n/d n/d

XXVI-N62 4 P -1 1.412 6.4 5.1 n/d n/d

XXVI-N30 4 P -1 1.374 9.5 5.1 n/d n/d
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Table C.5: (continued) Stability ranking for system XXVI.

Name Z Symm. Density PBE+TS PBE+MBD PBE0+MBD F

XXVI-N16 4 P -1 1.411 5.8 5.2 n/d n/d

XXVI-N60 4 P -1 1.413 5.9 5.2 n/d n/d

XXVI-N45 2 P 1 1.429 5.4 5.2 n/d n/d

XXVI-N47 4 P -1 1.422 5.5 5.2 n/d n/d

XXVI-N65 4 P -1 1.383 9.6 5.2 n/d n/d

XXVI-N52 4 P -1 1.419 5.7 5.3 n/d n/d

XXVI-N67 4 P -1 1.377 10.1 5.3 n/d n/d

XXVI-N58 4 P -1 1.380 9.6 5.3 n/d n/d

XXVI-N14 4 P -1 1.385 9.0 5.3 n/d n/d

XXVI-N54 4 P -1 1.375 9.9 5.4 n/d n/d

XXVI-N51 4 P -1 1.414 6.3 5.5 n/d n/d

XXVI-N84 4 P -1 1.412 7.8 5.5 n/d n/d

XXVI-N61 4 P -1 1.428 5.8 5.5 n/d n/d

XXVI-N78 4 P -1 1.393 9.0 5.6 n/d n/d

XXVI-N39 4 P -1 1.410 6.9 5.6 n/d n/d

XXVI-N31 4 P -1 1.395 8.4 5.6 n/d n/d

XXVI-N64 4 P -1 1.431 5.4 5.7 n/d n/d

XXVI-N44 4 P -1 1.378 10.1 5.7 n/d n/d

XXVI-N85 4 P -1 1.409 7.9 5.7 n/d n/d

XXVI-N74 2 P 1 1.374 10.5 5.8 n/d n/d

XXVI-N75 4 P -1 1.375 10.7 5.8 n/d n/d

XXVI-N35 16 C 2/c 1.375 10.8 5.8 n/d n/d

XXVI-N50 4 P -1 1.418 6.4 5.8 n/d n/d

XXVI-N49 4 P -1 1.409 7.6 5.9 n/d n/d

XXVI-N82 4 P -1 1.376 10.4 5.9 n/d n/d

XXVI-N83 4 P -1 1.412 7.2 5.9 n/d n/d

XXVI-N68 4 P -1 1.420 5.9 5.9 n/d n/d

XXVI-N55 2 P -1 1.416 7.7 5.9 n/d n/d

XXVI-N71 4 P -1 1.413 7.0 5.9 n/d n/d

XXVI-N96 4 P -1 1.416 6.9 5.9 n/d n/d

XXVI-N56 2 P 1 1.414 6.5 6.0 n/d n/d

XXVI-N100 4 P -1 1.403 8.3 6.0 n/d n/d

XXVI-N87 4 P n 1.395 8.4 6.0 n/d n/d

XXVI-N29 16 C 2/c 1.410 8.1 6.1 n/d n/d

XXVI-N86 4 P -1 1.424 6.2 6.1 n/d n/d

XXVI-N94 4 P -1 1.391 8.8 6.1 n/d n/d

XXVI-N70 4 P -1 1.419 6.7 6.1 n/d n/d

XXVI-N77 4 P -1 1.428 5.1 6.2 n/d n/d

XXVI-N93 4 P -1 1.386 11.5 6.2 n/d n/d

XXVI-N73 4 P 21/n 1.401 3.6 6.2 n/d n/d
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Table C.5: (continued) Stability ranking for system XXVI.

Name Z Symm. Density PBE+TS PBE+MBD PBE0+MBD F

XXVI-N91 4 P 21 1.387 10.8 6.2 n/d n/d

XXVI-N92 4 P -1 1.372 12.0 6.3 n/d n/d

XXVI-N80 8 C c 1.391 10.0 6.3 n/d n/d

XXVI-N57 4 P -1 1.425 5.3 6.3 n/d n/d

XXVI-N89 4 P -1 1.415 7.4 6.4 n/d n/d

XXVI-N79 4 P -1 1.382 10.7 6.4 n/d n/d

XXVI-N37 4 P 21 1.382 10.2 6.4 n/d n/d

XXVI-N81 4 P -1 1.410 7.1 6.5 n/d n/d

XXVI-N46 8 C 2/c 1.421 8.3 6.5 n/d n/d

XXVI-N88 4 P -1 1.421 5.9 6.5 n/d n/d

XXVI-N43 8 C 2/c 1.387 7.0 6.6 n/d n/d

XXVI-N59 16 C 2/c 1.396 8.8 6.7 n/d n/d

XXVI-N90 8 C c 1.392 8.5 6.7 n/d n/d

XXVI-N98 4 P -1 1.405 7.7 6.8 n/d n/d

XXVI-N97 4 P -1 1.406 7.9 6.9 n/d n/d

XXVI-N53 8 C 2/c 1.394 9.5 7.1 n/d n/d

XXVI-N95 4 P 21/c 1.420 8.7 7.6 n/d n/d

XXVI-N69 2 P -1 1.446 7.1 8.6 n/d n/d
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Abbreviations

AO Atomic Orbital

CCDC Cambridge Crystallographic Data Centre

CCSD(T) Coupled Cluster with Single, Double, and perturbative Triple excitations

CI Configuration Interaction

CSP Crystal Structure Prediction

DFA Density Functional Approximation

DFT Density Functional Theory

EOS Equation Of State

GGA Generalized Gradient Approximation

HA Harmonic Approximation

HF Hartree Fock

HMB Hexamethylbenzene

HMBI Hybrid Many-Body Interaction (fragment model)

INS Inelastic Neutron Scattering

IR Inrfrared

LCAO Linear Combination of Atomic Orbitals

LDA Local Density Aproximation

MAD Mean Absolute Deviation

MAE Mean Absolute Error

MAX Maximum absolute error

MBD Many-Body Dispersion (vdW model)

MO Molecular Orbital

MP2 Second order Møller-Plesset perturbation theory
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Abbreviations

ND3 deuterated ammonia

NMR Nuclear Magnetic Resonance

pDOS phonon Density Of States

PES Potential Energy Surface

PBE Perdew-Burke-Ernzerhof (density functional)

PBE0 Hybrid version of PBE

QHA Quasi-Harmonic Approximation

RMSD20 Root Mean Square Deviation calculated using a cluster of 20 molecules

rsSCS range-separated Self-Consistent Screening

SCF Self-Consistent Field

TS Tkatchenko-Scheffler (vdW model)

vdW van der Waals

XDM Exchange Dipole Moment (vdW model)

2D Two-Dimensional

3D Three-Dimensional
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[92] P. Jurečka, J. Černý, P. Hobza, D. R. Salahub, Density Functional Theory Aug-
mented with an Empirical Dispersion Term. Interaction Energies and Geometries
of 80 Noncovalent Complexes Compared with ab Initio Quantum Mechanics Cal-
culations, J. Comput. Chem. 2007, 28, 555–569.

[93] D. C. Langreth, J. P. Perdew, Exchange-Correlation Energy of a Metallic Surface:
Wave-Vector Analysis, Phys. Rev. B 1977, 15, 2884–2901.

[94] O. Gunnarsson, B. I. Lundqvist, Exchange and Correlation in Atoms, Molecules,
and Solids by the Spin-Density-Functional Formalism, Phys. Rev. B 1976, 13,
4274–4298.

[95] A. Tkatchenko, A. Ambrosetti, R. A. DiStasio Jr., Interatomic Methods for the
Dispersion Energy Derived from the Adiabatic Connection Fluctuation-Dissipation
Theorem, J. Chem. Phys. 2013, 138, 074106.

[96] J. Hermann, R. A. DiStasio Jr., A. Tkatchenko, First-Principles Models for van
der Waals Interactions in Molecules and Materials: Concepts, Theory, and Appli-
cations, Chem. Rev. 2017, 117, 4714–4758.

[97] A. Tkatchenko, Current Understanding of Van der Waals Effects in Realistic Ma-
terials, Adv. Func. Mat. 2015, 25, 2054–2061.

[98] A. Ambrosetti, N. Ferri, R. A. DiStasio Jr., A. Tkatchenko, Wavelike Charge
Density Fluctuations and van der Waals Interactions at the Nanoscale, Science
2016, 351, 1171–1176.

[99] V. V. Gobre, A. Tkatchenko, Scaling Laws for van der Waals Interactions in Nanos-
tructured Materials, Nat. Commun. 2013, 4, 2341.

[100] N. W. Ashcroft, N. D. Mermin, Solid State Physics, Saunders College, Philadel-
phia, 1976.

[101] P. Hofmann, Solid State Physics: An Introduction, of Physics Textbook, Wiley,
2008.

[102] C. Kittel, Introduction to Solid State Physics, Wiley, 1996.

186

http://dx.doi.org/10.1039/C5SC00410A
http://dx.doi.org/10.1039/C5SC03234B
http://dx.doi.org/10.1007/BF00549096
http://dx.doi.org/10.1063/1.1424928
http://dx.doi.org/10.1002/jcc.20570
http://dx.doi.org/10.1103/PhysRevB.15.2884
http://dx.doi.org/10.1103/PhysRevB.13.4274
http://dx.doi.org/10.1063/1.4789814
http://dx.doi.org/10.1021/acs.chemrev.6b00446
http://dx.doi.org/10.1002/adfm.201403029
http://dx.doi.org/10.1126/science.aae0509
http://dx.doi.org/10.1038/ncomms3341


[103] S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, Phonons and Related
Crystal Properties from Density-Functional Perturbation Theory, Rev. Mod. Phys.
2001, 73, 515–562.

[104] P. M. Morse, Diatomic Molecules According to the Wave Mechanics. II. Vibrational
Levels, Phys. Rev. 1929, 34, 57–64.

[105] J. P. Dahl, M. Springborg, The Morse Oscillator in Position Space, Momentum
Space, and Phase Space, J. Chem. Phys. 1988, 88, 4535–4547.

[106] A. Zen, J. G. Brandenburg, J. Klimeš, A. Tkatchenko, D. Alfè, A. Michaelides,
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